WATER-QUALITY OF LAKE CONROE ON THE WEST FORK SAN JACINTO RIVER, SOUTHEASTERN TEXAS

By Marvin W. Flugrath, Freeman L. Andrews and Emma M. McPherson

U.S. GEOLOGICAL SURVEY
Water-Resources Investigations Report 85-4301

Prepared in cooperation with the City of Houston

Austin, Texas

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information Write to:

District Chief U.S. Geological Survey 649 Federal Building 300 East 8th Street Austin, TX 78701 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 Telephone: (303) 236-7476

CONTENTS

	Page
Abstract	1
Introduction	2
Purpose of scope	2
Description of Lake Conroe and environment	
Analysis of water-quality data	
Thermal stratification	5
Dissolved oxygen	 7
Dissolved solids, chloride, and sulfate, and hardness	11
Dissolved trace elements	14
Dissolved iron and manganese	14
Other trace elements	18
Total nitrogen and phosphorus	18
PhytoplanktonPhytoplankton	20
Summary	26
Selected references	

ILLUSTRATIONS

)	Page
Figure	l. Man sho	wing location of Lake Conroe and the	
· gui c	water	-quality data-collection sites	3
	2-17. Grap		•
		Variations in monthly average air temperature	
		at Conroe and water temperature at	
	-	selected sites, September 1973 to September 1982	8
	3.		
		dissolved-oxygen concentrations at site A _C	9
	4.	Variations of average dissolved-oxygen concen-	
		trations during summer and winter surveys	10
	5.	Variations in volume-weighted-average concen-	
		trations of dissolved solids, dissolved	
		chloride, and dissolved sulfate, and hardness,	
		September 1973 to September 1982	12
	6.	Variations of average dissolved-solids	
		concentrations during summer and winter	
		surveys, September 1973 to September 1982	13
	7.	Seasonal profiles of dissolved-oxygen,	
		dissolved-iron, and dissolved-manganese	
		concentrations at site Ac	15
	8.	Variations of average concentrations of dis-	
		solved iron during summer and winter surveys	16
	9.	Variations of average concentrations of	
		dissolved manganese during summer and	
		winter surveys	17
	10.	Variations of dissolved-iron and dissolved-	
		manganese concentrations at site A _c ,	
		September 1973 to September 1982	19
	11.	Seasonal profiles of total inorganic-nitrogen	
		and total phosphorus concentrations, and	0.1
	10	water temperature at site Ac	21
	12.	Seasonal profiles of total inorganic-nitrogen	
		and total phosphorus concentrations, and	22
	12	water temperature at site G _C	22
	13.	Variations of average total inorganic-	
		nitrogen concentrations during summer	
		and winter surveys, September 1973 to September 1982	23
	1/1	Variations of total phosphorus concentrations	23
	14.	during summer and winter surveys, September	
		1973 to September 1982	21
	15.	Variations of total inorganic-nitrogen and	27
	13.	total phosphorus concentrations at site A_c ,	
			25
	16.	Seasonal variations of algal densities at	
	10•		27
	17.	Seasonal variations of algal densities at	-,
	.,•	site G_{C} , March 1978 to August 1981	28

TABLES

			Table
T-L1	1 00 D-	aulta of shamiaal auglitu suurus	
Tables		sults of chemical-quality surveys:	21
	1. 2.	September 19, 1973	
	3.	February 13, 1974April 29, 1974	
	3. 4.	August 30, 1974	
	5.	February 12, 1975	
	6.	May 19, 1975	
	7.	August 28, 1975	
	8.	January 16, 1976	
	9.	April 28, 1976	
	10.	August 19, 1976	
	ii.	February 16, 1977	
	12.	May 26, 1977	
	13.	September 16, 1977	
	14.	March 14, 1978	
	15.	July 13, 1978	
	16.	September 29, 1978	
	17.	February 14, 1979	
	18.	June 15, 1979	
	19.	August 17, 1979	
	20.	January 29, 1980	
	21.	May 22, 1980	112
	22.	September 11, 1980	
	23.	January 15, 1981	
	24.	May 21, 1981	
	25.	August 20, 1981	
	26.	March 3, 1982	
	27.	June 3, 1982	
	28.	September 2, 1982	139
		ytoplankton_analyses:	
	29.	October 1977 to August 1978	143
	30.	October 1978 to August 1979	147
	31.	October 1979 to August 1980	150
	32.	October 1980 to August 1981	152

METRIC CONVERSIONS

Factors for converting inch-pound units to metric equivalents are:

From	Multiply by	To obtain
acre	4,047	square meter
acre-foot	0.001233	cubic hectometer
cubic foot per second	0.02832	cubic meter per second
foot	0.3048	meter
mile	1.609	kilometer
square mile	2.590	square kilometer

Temperature in degrees Fahrenheit (°F) can be converted to degrees Celsius (°C) as follows:

$$^{\circ}F = 1.8(^{\circ}C) + 32$$

WATER QUALITY OF LAKE CONROE ON THE WEST FORK SAN JACINTO RIVER, SOUTHEASTERN TEXAS

By

Marvin W. Flugrath, Freeman L. Andrews, and Emma M. McPherson

ABSTRACT

Thermal stratification in Lake Conroe usually begins to develop in March and persists until October. Thermal stratification has resulted in significant seasonal and areal variations in the concentrations of dissolved oxygen, dissolved iron, dissolved manganese, total inorganic nitrogen, and total phosphorus.

Volume-weighted-average concentration of dissolved solids generally were less than 120 milligrams per liter, those of dissolved chloride generally were less than 22 milligrams per liter, and those of dissolved sulfate were less than 10 milligrams per liter in Lake Conroe during the 1973-82 water years. The concentrations of each of these constituents usually were largest during the summer. The water was moderately hard (hardness greater than 60 but less than 120 milligrams per liter as calcium carbonate).

The average concentrations of dissolved oxygen at most sites in the down-stream one-half of the lake averaged 3.2 milligrams per liter during summer stratification and more than 9 milligrams per liter during winter circulation. The concentrations at most sites in the headwaters of the lake averaged less than 4.3 milligrams per liter during the summer and less than 7.9 milligrams per liter during the winter. Water below depths of 25 to 35 feet usually contained less than 1 milligram per liter dissolved oxygen during the summer.

The concentrations of dissolved iron and dissolved manganese in water throughout the reservoir during winter circulation and in water near the reservoir surface during summer stratification were less than 100 micrograms per liter. The greatest concentration occurred during summer stagnation near the reservoir bottom at site $A_{\rm C}$, a deep site near Lake Conroe Dam.

The concentrations of total inorganic nitrogen and total phosphorus were greatest during summer stratification in water near the reservoir bottom at deep sites. No accumulation of these constituents within the reservoir was detected during the study.

The densities and composition of algal populations varied seasonally. Algal densities were greatest during the summer with blue-green algae being the predominant phylum.

INTRODUCTION

Since October 1961, the U.S. Geological Survey periodically has made comprehensive water-quality surveys of selected lakes and reservoirs in Texas as part of a continuing cooperative program with Federal, State, and local agencies to inventory the surface-water resources of the State. During the 1973 water year, the program was expanded to include water-quality surveys on Lake Conroe in cooperation with the city of Houston, the San Jacinto River Authority and the Texas Department of Water Resources. From 1973 to 1982, 28 comprehensive water-quality surveys were conducted to coincide with the winter, spring, and summer seasons. Sampling sites were located along seven traverses labeled A through G (fig. 1). Sampling sites at the deepest point along the traverse were identified by the subscript "c" for channel. Sites to the left of the channel were identified by the subscript "l".

During each survey, specific conductance, temperature, pH, and dissolvedoxygen concentration were measured at the water surface, near the reservoir bottom, and at intervening depth intervals of about 10 feet for 1 to 2 sites in each traverse. On the basis of these measurements, samples were collected to define areal variations and patterns of stratification of major ions (dissolved cations and anions) nutrients (total inorganic nitrogen and total phosphorus), and trace elements (dissolved iron, dissolved manganese and other selected dissolved trace elements). Generally, samples for determinations of major ions were collected at the water surface and near the reservoir bottom at sites near the dam, near midreservoir, and in the headwaters of the reser-Samples for determination of nutrients, iron, and manganese were collected at the water surface, near the reservior bottom, and above and below the thermocline (if a thermocline existed), or at mid-depth at all sampling sites along each traverse. Beginning in March 1978, samples for phytoplankton analysis were collected near the dam and in the headwaters of the reservoir at a depth corresponding to one-half the depth of light penetration (as measured by Secchi-disk transparency).

Purpose and Scope

The purpose of this report is to summarize water-quality data collected from September 1973 to September 1982, and to discuss the variations of selected water-quality constituents and properties of water in Lake Conroe. This report was prepared by the U.S. Geological Survey in cooperation with the city of Houston under an agreement separate from those under which the water-quality surveys were made. The data compilation and analysis are limited to those data collected by the Geological Survey. These data are presented in tables 1 to 28 at the end of this report.

Description of Lake Conroe

Because of the rapid population increase in Houston during the last several decades, which was one of the largest population increases in the Nation, additional water supplies were needed to meet the increased demand. Lake Conroe (fig. 1) was constructed by the city of Houston, the San Jacinto River Authority, and the Texas Department of Water Resources to provide storage for domestic and industrial water supplies, as well as to provide a recreational facil-

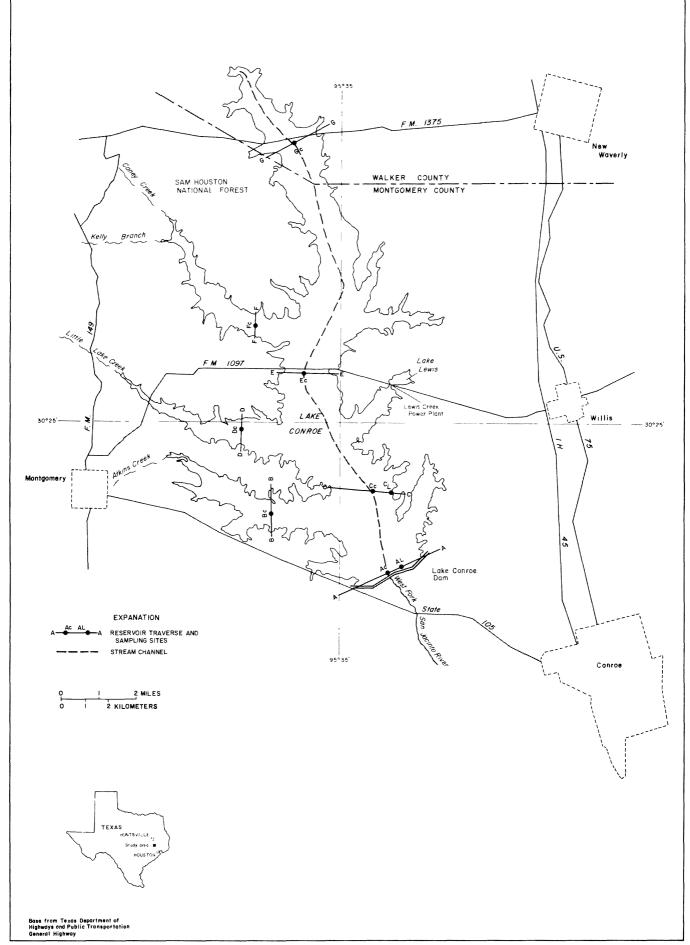


Figure 1.--Location of Lake Conroe and the water-quality data-collection sites.

ity for the Houston area. Dam construction began in February 1970 and was completed in January 1973. Impoundment of water began in January 1973. The following data regarding the dam and lake were compiled by Dowell and Petty (1973, p. 10.02.0-A):

Feature	Elevation (feet above mear sea level)	Capacity (acre-feet)
Top of dam	212.0	706,970
Top gates	202.5	462,640
Normal water level	201.0	430,260
Invert of high outlet	191.0	253,240
Invert of low outlet	145.0	370
Usable conservation storage space		429,890

Lake Conroe, located in Montgomery and Walker Counties, has a surface area of 20,900 acres and an average depth of 40 feet. The lake is situated in the northwestern part of the San Jacinto River watershed. The upper end of the lake is about 15 miles southwest of Huntsville and the dam is 7 miles northwest of Conroe. The northern part of the lake is situated in the Sam Houston National Forest. The drainage area of the lake at the dam is 445 square miles.

Prior to construction of Lake Conroe, much of the San Jacinto River basin was rural and sparsely populated. Since construction of the dam, development in the lower San Jacinto River basin has began and now much of the drainage area downstream from Lake Conroe is urban.

Water diverted from Lake Conroe for industrial and public supply by the city of Houston and Lewis Creek Powerplant is summarized as follows:

	diversions cre-feet)
City of Houston	Lewis Creek Powerplant
4,846	
226	
	2,525
4,510	2,280
24,130	3,150
17,280	3,153
19,060	7,020
5,860	3,740
4,880	4,062
	(ac City of Houston 4,846 226 4,510 24,130 17,280 19,060 5,860

ANALYSIS OF WATER-QUALITY DATA

Thermal Stratification

Impoundment of water in a reservoir may result in significant changes in the quality of the water. Some of these changes are beneficial; others are detrimental. Many of the detrimental changes are related to thermal stratification--layering of the water due to temperature-induced density differences.

The data in the following table (Weast, 1975, p. F-5) indicate that pure water reaches its maximum density at a temperature of about 4°C and that the difference in density per 1°C is much greater at high temperatures than at low temperatures.

Temperature (°C)	Density (grams per milliliter)
0.0	0.999868
4.0	1.000000
5.0	.999992
10.0	.999728
15.0	.999129
20.0	.998234
25.0	.997075
30.0	.995678
35.0	.994063

A change in temperature from 29° to 30°C results in a change in density of about 0.0003 g/mL (gram per milliliter), whereas, a change in temperature from 10° to 11°C results in a density change of about 0.0001 g/mL. Stable stratification is common in lakes and reservoirs where the density of the upper and lower strata of water differs by about 0.001 to 0.002 g/mL. Thus, temperature differences of 3° to 4°C during the summer may result in stable stratification.

The degree and duration of thermal stratification is dependent on the geographic location, climatologic conditions, and depth, surface area, and configuration of the lake or reservoir. During the winter, many deep reservoirs in the temperate zone charateristically are isothermal—that is, the water has a uniform temperature and density and circulates freely. With the onset of spring, solar heating warms the incoming water and the water at the reservoir surface, causing a decrease in density. This warm surface water overlies the colder and denser water. As the surface becomes progressively warmer, the density gradient steepens and the depth to which wind can mix the water is decreased. Thus, water in the reservoir commonly is separated into three fairly distinct strata:

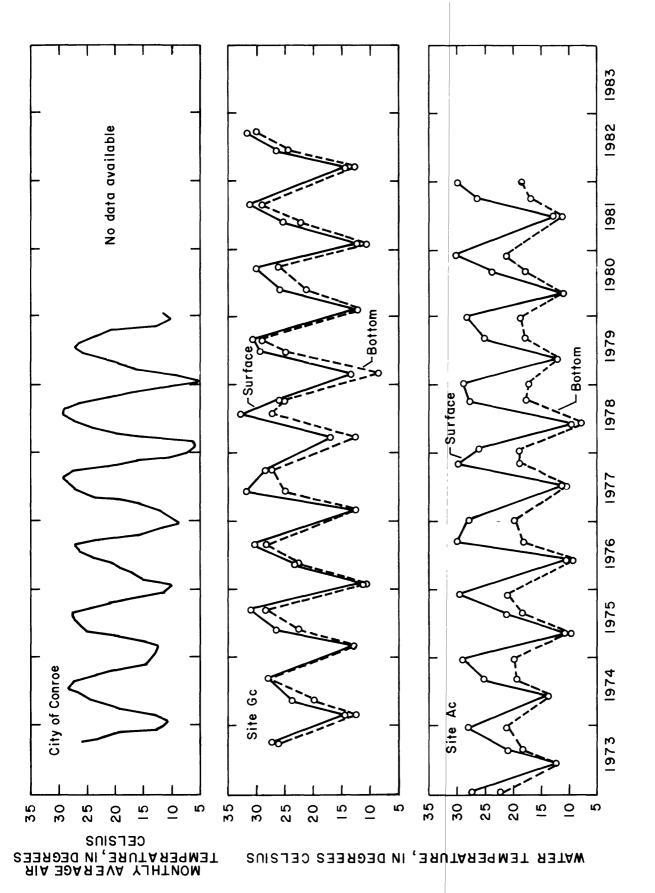
- (1) The epilimnion--a warm freely circulating surface stratum;
- (2) the metalimnion—a middle stratum characterized by a rapid decrease in temperature with increase in depth; and
- (2) the hypolimnion--a cold stagnant lower stratum.

Thermal stratification in deep reservoirs usually persists until fall, when a decrease in atmospheric temperature cools both the surface water in the reservoir and inflow from streams. When the temperatures and densities of the epilimnion and metalimnion approach those of the hypolimnion, the resistance to mixing is decreased, and wind action produces a complete mixing or overturn of the water in the lake or reservoirs.

The depth throughout most of Conroe Reservoir outside the drowned channel of the West Fork San Jacinto River, usually is less than 25 feet. Because of shallow depths, the pattern of thermal stratification in much of the reservoir often varies from the classical three-layered pattern.

Water-temperature data for the reservoir during water-quality surveys are shown in tables 1 to 28 and in figure 2. These data are supplemented by monthly-mean air temperature data for the city of Conroe. Air temperatures decrese reapidly during October and November and indicate that fall overturn likely occurs during October and November. The water in the lake is nearly isothermal from November through February. In shallow areas of the reservoir, wind action keeps the water well mixed top to bottom, year round. During March, April, and May warming of the surface water results in a gradual vertical temperature gradient. The temperature gradient usually steepens during June, July, August, and September resulting in three fairly distinct layers in deep areas of the reservoir. However, the temperature and density of water near the bottom in shallow areas during the warm-weather months may approach those at the surface and prevent significant stratification.

Dissolved Oxygen


Fish and other aquatic organisms require oxygen to maintain the metabolic processes that produce energy for growth and reproduction. Moreover, dissolved oxygen is related to the cycles of some of the chemical constituents dissolved in water and, thus, is one of the most important constituents that affects the quality of water in a reservoir.

Water entering a reservoir contains organic material both from natural sources and from man's waste. Bacterial decomposition of this organic material requires oxygen. Decaying trees, brush, and other pre-existing oxidizable material within the area inundated by the reservoir, and decaying algae and other organic material produced within the reservoir, also exert an oxygen demand.

The distribution of dissolved oxygen in a reservoir is related to thermal stratification. Oxygen enters the surface stratum of a reservoir by plant photosynthesis and by absorption from the atmosphere. During winter circulation, the water is exposed to the atmosphere repeatedly, and dissolved oxygen utilized in the decomposition of organic matter is replenished. However, during spring and summer, thermal stratification results in a decrease of vertical circulation of the water. Oxygen utilized in the decomposition of organic material is not replaced in the deep stratum of the reservoir, and a vertical dissolved-oxygen gradient develops.

Dissolved-oxygen data for Lake Conroe are presented in tables 1 to 28 and in figures 3 and 4. These data show that the dissolved-oxygen gradient usually is large at deep sites during summer stratification when algal growth in the near-surface stratum is prolific. The gradients at all sites decrease greatly during winter circulation.

The concentration of dissolved oxygen in the reservoir varies seasonally and areally. At the deeper sites during summer, dissolved-oxygen concentrations

temperature at selected sites, September 1973 to September 1982. Conroe and water Figure 2.--Variations in monthly average air temperature at

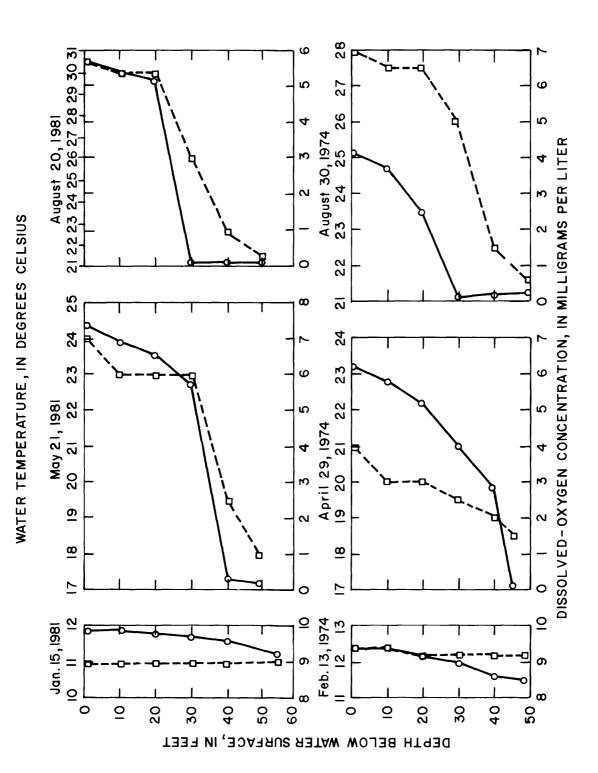


Figure 3.--Seasonal profiles of water temperature and dissolved-oxygen concentrations at site A_C.

- DISSOLVED OXYGEN

O- - TEMPERATURE

EXPLANATION

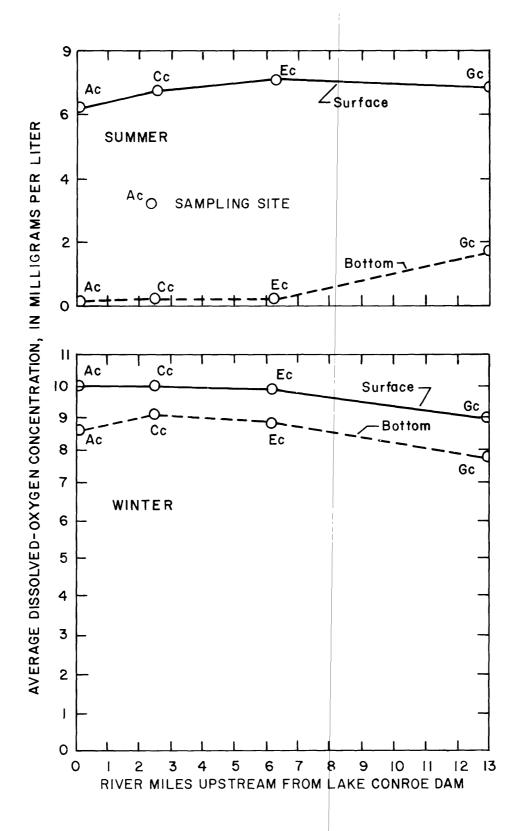


Figure 4.--Variations of average dissolved-oxygen concentrations during summer and winter surveys.

range from 0.2 mg/L (milligrams per liter) near the reservoir bottom to more than 9 mg/L at the water surface. During the winter, dissolved-oxygen concentrations ranged from about 6 mg/L near the reservoir bottom to about 12 mg/L at the water surface at the deeper sites. In the headwaters of the reservoir at site $G_{\rm C}$, a shallow site, dissolved-oxygen concentrations ranged from 4.8 mg/L near the reservoir bottom to 10.8 mg/L at the water surface during the winter and from 0.0 mg/L near the reservoir bottom to 9.4 mg/L at the water surface during the summer.

The average concentration of dissolved oxygen at most sites in the down-stream one-half of the lake was 3.2 mg/L during summer stratification and more than 9 mg/L during winter circulation. The average concentration at most sites in the headwaters of the lake was less than 4.3 mg/L during the summer and more than 7.9 mg/L during the winter. Water below depths of 25 to 35 feet usually contain less than 1 mg/L dissolved oxygen during the summer.

Oxygen utilized in the stabilization of unoxidized material from upstream sources and from tributaries by decaying algae and by pre-existing organic material along the bottom of the reservoir is not replaced during summer stratification; and water below depths of 30 feet usually contains less than 1 mg/L dissolved oxygen.

Dissolved Solids, Chloride, and Sulfate, and Hardness

Some of the more important constituents or properties that affect the utility of a reservoir as a water supply include dissolved solids, dissolved chloride, dissolved sulfate, and hardness. Because the concentrations of these constituents or properties and specific conductance of a water are directly related, onsite measurements of specific conductance can be used to estimate concentrations of some constituents in a reservoir. During each reservoir survey, the specific conductance of water at each sampling site was determined at depth intervals of 5 to 10 feet. These data and results of analyses for dissolved solids, dissolved chloride, dissolved sulfate, and hardness of samples collected at the water surface and near the reservoir bottom at selected sites were used to estimate concentrations of dissolved constituents during each of the reservoir surveys and to compute volume-weighted-average concentrations of selected dissolved constituents within the reservoir (fig. 5) (Wells and Schertz, 1984). Regressions developed were significant at the 95-percent confidence level.

Data in figure 5 show that the volume-weighted-average concentration of dissolved solids (sum of dissolved constituents) generally was less than 120 mg/L, dissolved chloride generally was less than 22 mg/L, and dissolved sulfate was less than 10 mg/L in water in Lake Conroe. The water was moderately hard (hardness greater than 60 but less than 120 mg/L as calcium carbonate, Hem, 1970). The volume-weighted-average concentrations varied in response to rainfall-runoff from the intervening area.

Seasonal and areal variations occurred in the average concentrations of dissolved solids (fig. 6). Average concentrations of dissolved solids in Lake Conroe were slightly greater during the summer than during the winter and average dissolved-solids concentrations generally were greater near the bottom

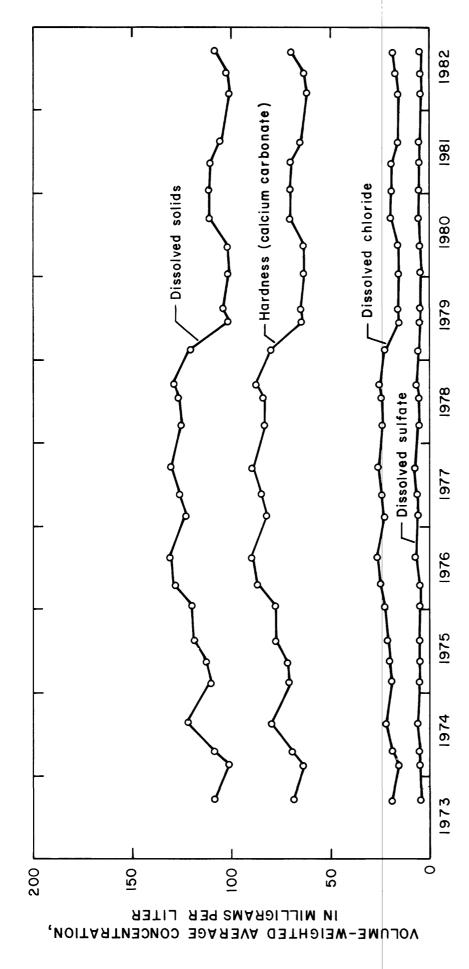


Figure 5.--Variations in volume-weighted-average concentrations of dissolved solids, dissolved chloride, and dissolved sulfate, and hardness, September 1973 to September 1982.

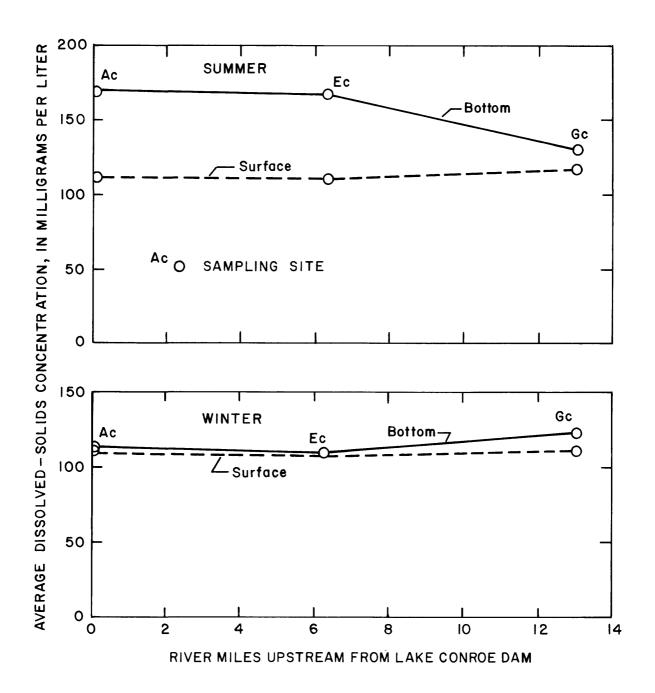


Figure 6.--Variations of average dissolved-solids concentrations during summer and winter surveys, September 1973 to September 1982.

of the reservoir than at the water surface. For example, during the summer, the average concentration of dissolved solids at site A_C was lll mg/L at the water surface and 171 mg/L near the reservoir bottom. During the winter, the average concentration of dissolved solids at site A_C was 112 mg/L at the water surface and 114 mg/L near the reservoir bottom. At site G_C near the headwaters of the lake, the average dissolved-solids concentration during the summer was about 118 mg/L at the water surface and 134 mg/L near the reservoir bottom. During the winter, average dissolved-solids concentrations were about 111 mg/L at the water surface and 124 mg/L near the reservoir bottom.

Dissolved Trace Elements

Trace elements include those constituents, mostly cations, whose concentrations usually do not exceed 1 mg/L or 1,000 μ g/L (micrograms per liter), although in exceptional waters one or more trace elements may be present in comparatively large concentrations and may be major components for that particular water. For the purpose of this report, trace elements include arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, mercury, selenium, silver, and zinc.

The occurrence of most of these trace elements in water is a matter of concern to water users and planners alike because of the potentially harmful effects of excessive concentrations on man and aquatic life. Undesirable concentrations of trace elements in water may render it unsuitable as a public water supply. Many trace elements also may be concentrated at successive steps in the aquatic food chain, making fish and other aquatic life undesirable for human consumption.

Dissolved Iron and Manganese

The occurence and distribution of dissolved iron and manganese in waters of Lake Conroe are related to the dissolved-oxygen content (fig. 7). During summer stratification the hypolimnion is unable to replenish dissolved oxygen utilized in the decomposition of organic matter. During the period of anaerobic decomposition that follows, reducing conditions often result in the solution of iron and manganese from sediments at the concentrations of iron and manganese in the bottom waters at deep sites continue to increase throughout the duration of summer stratification and eventually may reach high values before the overturn. After circulation begins and oxygen is replenished throughout the depth of the reservoir, most of the iron and manganese is oxidized to less soluble forms and settles to the bottom of the reservoir.

Throughout the year, water at the surface of the reservoir and water near the reservoir bottom during winter circulation usually contained less than 100 $\mu g/L$ dissolved iron, and 100 $\mu g/L$ dissolved manganese (fig. 8 and 9). However, during summer stratification, the concentrations of both constituents near the bottom of the reservoir are larger near the dam in response to increases in depth and decreases in the concentration of dissolved oxygen.

At site G_C , a shallow site in the headwaters of the lake, the iron and the manganese concentrations vary due to stratification and turnover of the reser-

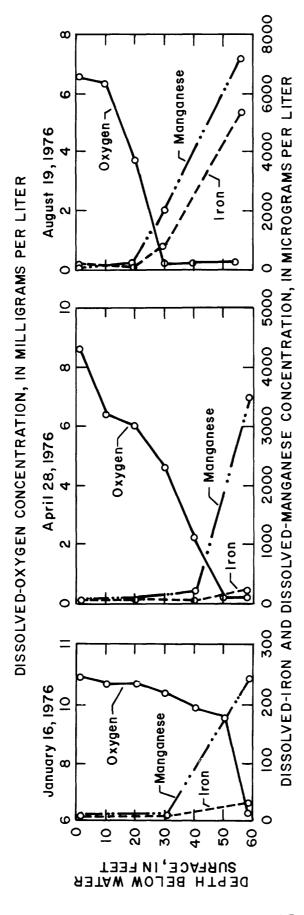


Figure 7.--Seasonal profiles of dissolved-oxygen, dissolved-iron, and dissolved-manganese concentrations at site A_C.

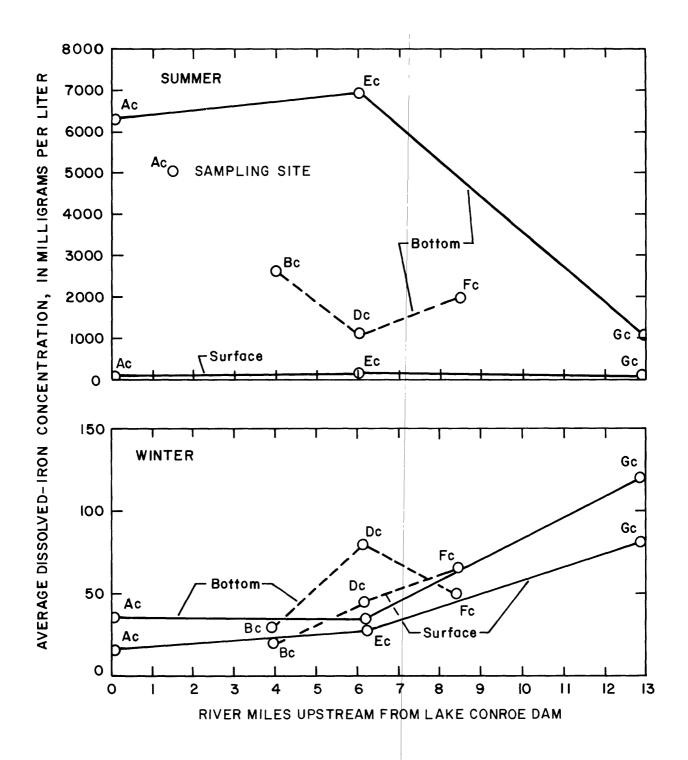


Figure 8.--Variations of average concentrations of dissolved iron during summer and winter surveys.

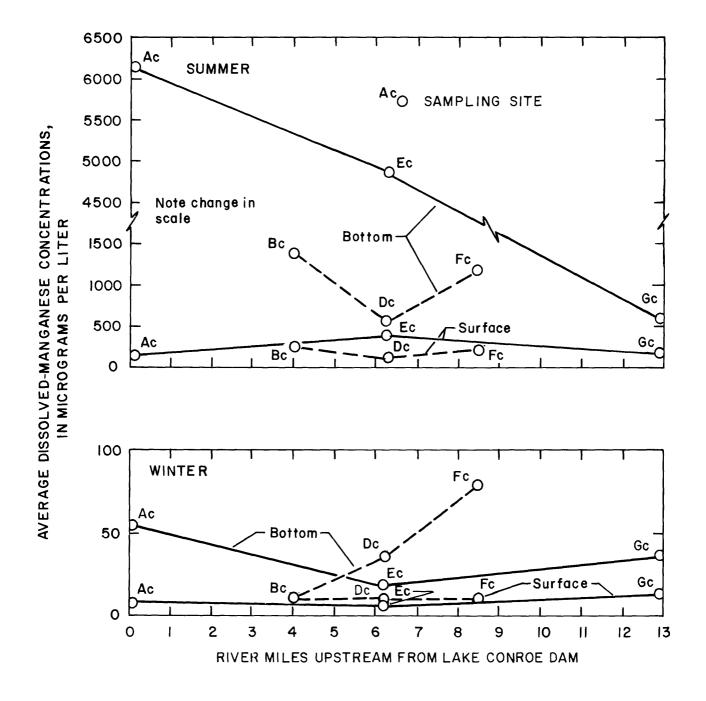


Figure 9.--Variations of average concentrations of dissolved manganese during summer and winter surveys.

voir. During the summer, the iron concentration at site G_C has ranged from 0 to 3,000 μ g/L and the manganese concentration has ranged from 0 to 2,000 μ g/L.

At site A_C , a deep site near Conroe Dam (fig. 10), the iron and manganese concentrations usually are large near the reservoir bottom until the lake turns over. During the summer, iron concentrations near the reservoir bottom ranged from 1,500 to 11,000 $\mu g/L$ and the manganese concentrations ranged from 3,200 to 7,800 $\mu g/L$.

Other Trace Elements

Results of analyses for other trace elements in water samples collected at the water surface and near the reservoir bottom at site A_{C} during surveys from March 1978 through August 1981 are given in tables 14 to 25. These data indicate that all the other trace elements were detected. Except for dissolved barium, concentrations of the other trace elements did not exceed 30 $\mu\text{g/L}$. Generally, concentrations at the water surface did not appear to be greater than concentrations near the reservoir bottom; and there were no seasonal variations.

Total Nitrogen and Phosphorus

According to a literature review by Greeson (1971, p. 75), at least 21 elements in some chemical combination are essential nutrients in the biological productivity in waters of a lake or reservoir. Among these nutrients, nitrogen and phosphorus are the most dominant in controlling productivity because their concentrations are more likely to be in limited supply.

Sources that may contribute nitrogen and phosphorus to a reservoir include runoff from urban and agricultural areas, sewage effluent, industrial wastes, precipitation, decomposing plant and animal debris, and bottom sediments. Both total nitrogen and total phosphorus in the inflow to a reservoir may consist of four major components, dissolved and particulate inorganic forms, and dissolved and particulate organic forms.

As the water enters the reservoir, most of the particulate nitrogen and phosphorus eventually settle to the bottom. Part of the dissolved fractions are utilized by algae and other aquatic organisms as sources of energy. Eventually, these organisms die and settle to the bottom of the reservoir carrying their cellular nitrogen and phosphorus with them.

During summer strafication, decay of aquatic organisms and chemical reduction of bottom sediments decreases the concentration of dissolved oxygen and release nitrogen and phosphorus to the hypolimnion. They may remain there until the turnover, at which time they are recirculated.

Analyses of samples collected from Lake Conroe during the 1973-79 water years included total nitrite plus nitrate nitrogen and ammonia nitrogen (tables 1 to 19); thereafter, analyses included total nitrite plus nitrate nitrogen and total ammonia plus organic nitrogen (tables 20 to 28). Because many of the analyses did not include total organic nitrogen, most of the following discussion is limited to interpretations of the data for total

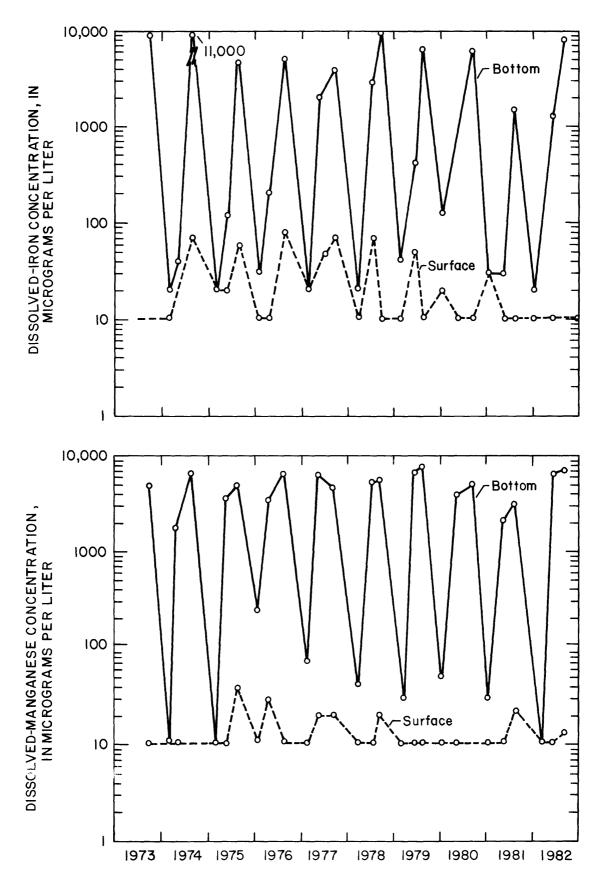


Figure 10.--Variations of dissolved-iron and dissolved-manganese concentrations at site A_C, September 1973 to September 1982.

inorganic nitrogen (sum of total ammonia, total nitrite, and total nitrate nitrogen) and total phosphorus.

The concentrations of total inorganic nitrogen as nitrogen and total phosphorus as phosphorus in Lake Conroe varied seasonally and areally (figs. 11 to 15). During winter circulation, the concentrations were relatively uniform throughout the lake. The concentration of total inorganic nitrogen near the reservoir bottom at site $A_{\rm C}$ averaged 0.23 mg/L, whereas concentrations at the water surface averaged 0.14 mg/L. The concentrations of total phosphorus averaged about 0.06 mg/L both at the water surface and near the reservoir bottom.

When more complete stratification occurred during the summer, there was a trend for the concentrations of total inorganic nitrogen and total phosphorus of total inorganic nitrogen and total phosphorus in the hypolimnion at the headwaters site (G_C) averaged 0.41 and 0.23 mg/L, respectively, whereas the concentration of total inorganic nitrogen in the hypolimnion at site (A_C) averaged 2.75 mg/L and the concentration of total phosphorus averaged 0.59 mg/L (fig. 15). Average total inorganic-nitrogen and total phosphorus concentrations in the epilimnion were smaller than 0.10 mg/L throughout the lake during summer stratification.

During the period of record, the concentrations of both total inorganic nitrogen and total phosphorus at deep sites did not appear to increase with time (fig. 15). These data indicate that nutri ents are being recycled and accumulation is prevented.

Phytoplankton

Phytoplankton is a community of floating aquatic plants that drift passively with water currents. Analyses of phytoplankton in Lake Conroe during water-quality surveys are given in tables 29 to 32 at the end of this report. The most common freshwater phytoplankton considered in this study are the algae. Algae are common and normal inhabitants of water in lakes and reservoirs and are important sources of food and dissolved oxygen for fish and other aquatic animals. However, massive densities of algae (blooms), especially blue-green algae, may clog filters of water-treatment plants and may cause undesirable tastes, odors, and other problems in water supplies (Palmer, 1977). The respiration and decay of algae during and after blooms may cause oxygen depletion in a lake or reservoir and may result in fish kills or mortality of other aquatic organisms.

Some of the more important factors that affect the population of algae in a lake or reservoir include light, temperature, and available nutrients (Wetzel, 1975). Generally, algal productivity is greater in clear water than in turbid water and greater in warm water than in cold water. According to Ferguson (1968), the rate of algal growth doubles with each 11-°C increase in water temperature between 0° and 32°C.

The density and composition of an algal population in a lake or reservoir

O-O TOTAL INORGANIC NITROGEN

EXPLANATION

Δ--- TOTAL PHOSPHORUS

- TEMPERATURE

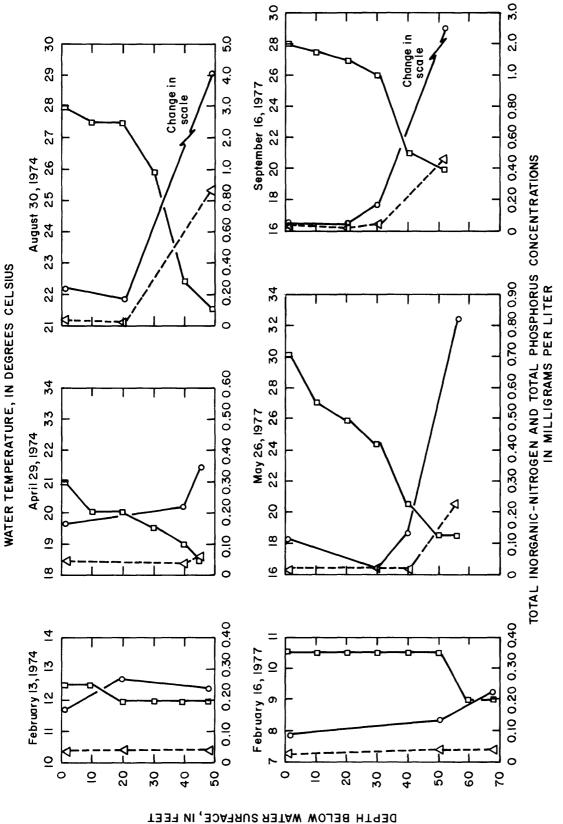


Figure 11.--Seasonal profiles of total inorganic-nitrogen and total phosphorus concentrations,

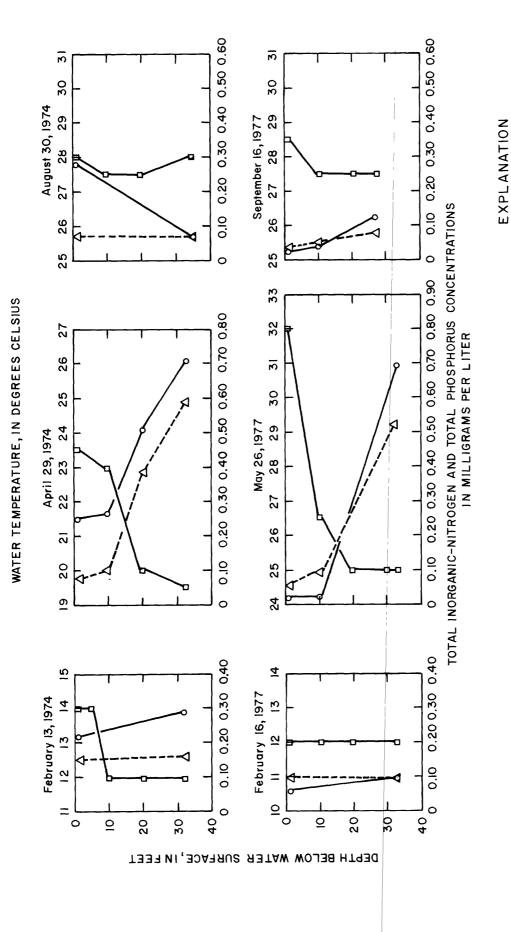


Figure 12.--Seasonal profiles of total inorganic-nitrogen and total phosphorus concentrations, and water temperature at site GC.

O- TOTAL INORGANIC NITROGEN

△--△ TOTAL PHOSPHORUS

TEMPERATURE

7

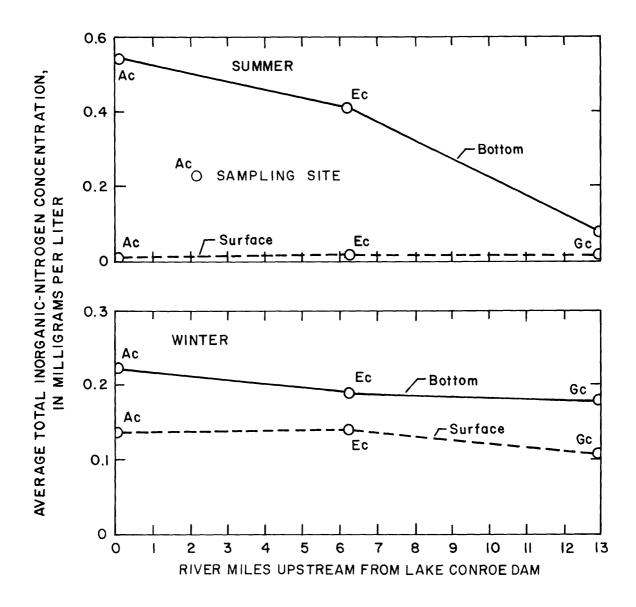


Figure 13.--Variations of average total inorganic-nitrogen concentrations during summer and winter surveys, September 1973 to September 1982.

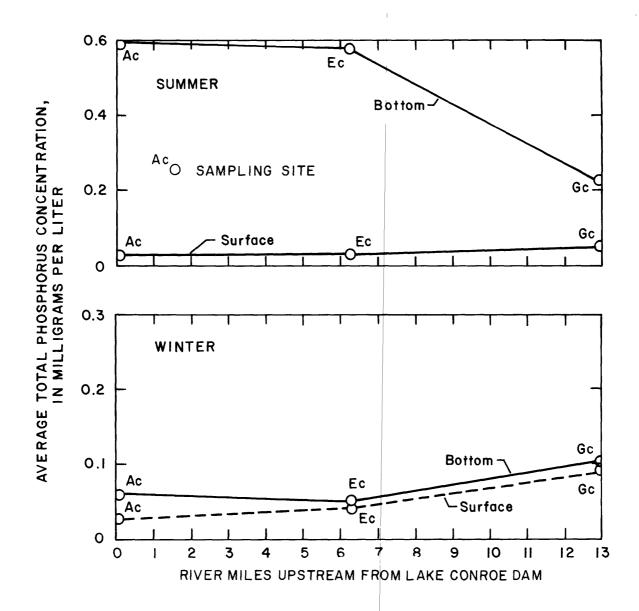


Figure 14.--Variations of total phosphorus concentrations during summer and winter surveys, September 1973 to September 1982.

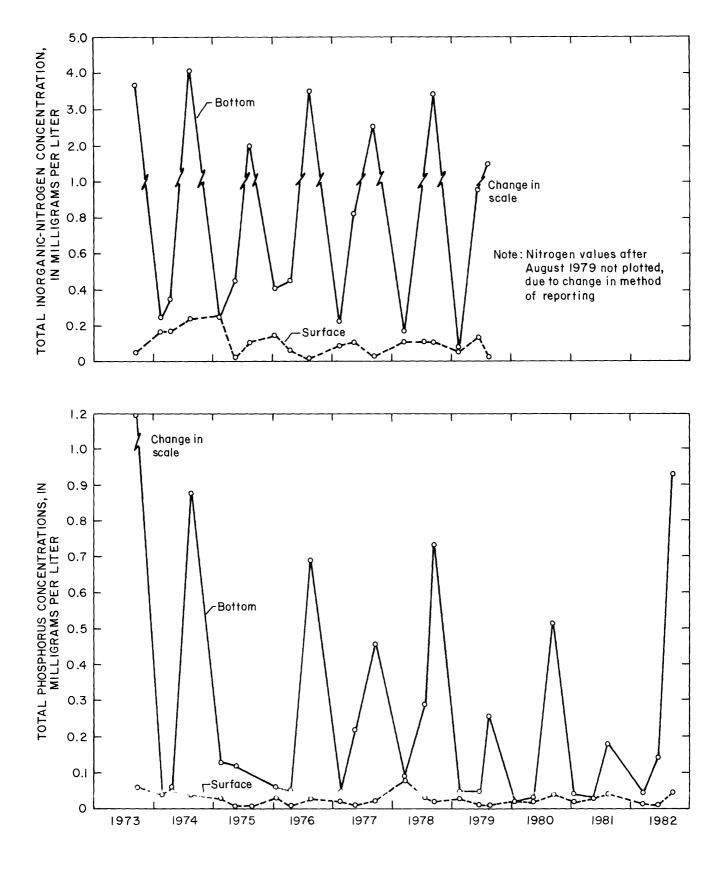
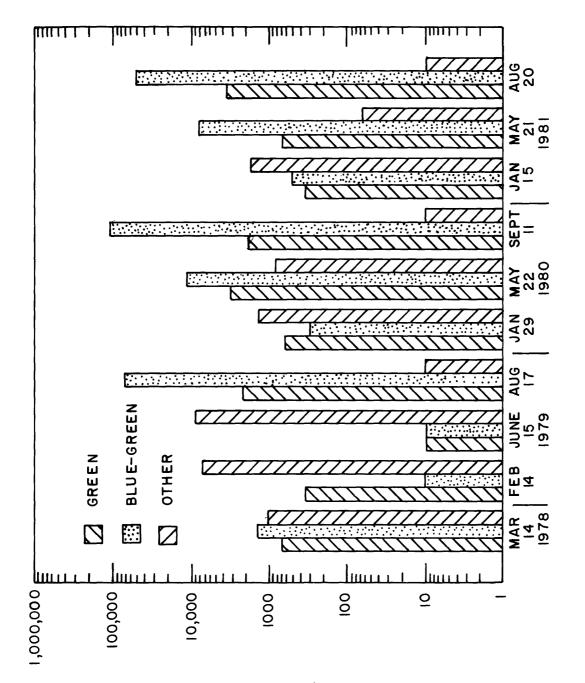


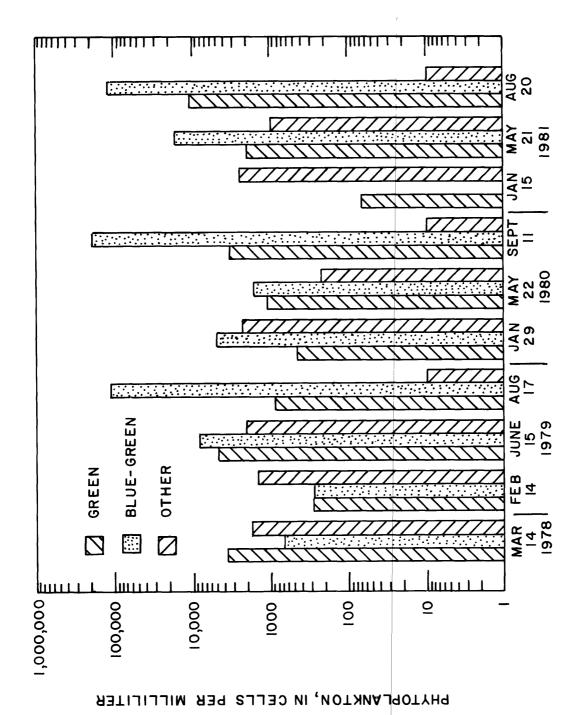
Figure 15.--Variations of total inorganic-nitrogen and total phosphorus concentrations at site A_C, September 1973 to September 1982.

may fluctuate rapidly during the course of a year in response to changes in light, temperature, and available nutrients. Blooms generally are associated with warm summer weather but also may occur in the winter.

During the 1978 water year, seasonal water-quality surveys were expanded to include the collection and analysis of samples for phytoplankton (algae) at site A_C near the dam and site G_C in the headwaters. All samples were collected at depths equivalent to one-half the depth of light penetration, as determined by measurements with Secchi disks. The data (figs. 16 and 17 and table 29) indicate that the density and composition of algal populations at both sites varied seasonally. At site A_C , total algae counts ranged from 2,400 to 110,000 cells/mL (cells per milliliter) and averaged about 30,000 cells/mL. At site G_C algae counts ranged from 2,100 to 200,000 cells/mL and averaged about 51,000 cells/mL. The total algal population at both sites usually were minimum during the winter and were usually maximum during the summer when water temperatures and nutrient concentrations ranged growth. The predominant algae during summer surveys at both sites and many spring surveys were blue-green algae (figs. 16 and 17).


SUMMARY

Thermal stratification in Lake Conroe usually begins to develop in March and persists until October. During June, July, August, and September, thermal stratification usually results in three fairly distinct layers in deep areas: (1) The hypolimnion a cold stagnet lower stratum; (2) the metalimnion, a middle stratum characterized by a rapid decrease in temperature with increase in depth; and (3) the epilimnion, a warmer freely circulating surface stratum.


The concentrations and distribution of dissolved oxygen, iron, and manganese and total inorganic nitrogen and phosphorus are related to the pattern of thermal stratification. The concentrations of dissolved oxygen are smallest and the concentrations of dissolved solids, dissolved iron, dissolved manganese, total inorganic nitrogen, and total phosphorus are largest in the hypolimnion. When the lake is not stratified, these constituents have similar concentrations throughout the vertical profile.

The average concentration of dissolved oxygen at most sites in the down-stream one-half of the lake averaged 3.2 mg/L during summer stratification and more than 9 mg/L during winter circulation. The concentration at most sites in the headwaters of the lake averaged less than 4.3 mg/L during the summer and less than 7.9 mg/L during the winter. Water below depths of 25 to 35 feet usually contain less than 1 mg/L dissolved oxygen during the summer.

The occurrence and distribution of dissolved iron and manganese are related to the dissolved-oxygen concentration in the water. Water throughout the lake during winter circulation and water at the surface during summer stratification usually contained less than 100 $\mu g/L$ of dissolved iron and 100 $\mu g/L$ of dissolved manganese. The concentration of both iron and manganese in water near the reservoir bottom at deep sites increased greatly during summer stratification. At site A_C , a deeper site near Lake Conroe Dam, the concentration of iron in water near the reservoir bottom ranged from 1,500 to to 11,000 $\mu g/L$ and averaged about 6,000 $\mu g/L$ during the summer. Manganese

PHYTOPLANKTON, IN CELLS PER MILLILITER

-28-

concentrations in water at the reservoir bottom at this site during summer ranged from 3,200 to 7,800 μ g/L and averaged about 5,000 μ g/L.

The total inorganic-nitrogen and total phosphorus concentrations in Lake Conroe varied seasonally and areally. Concentrations usually were largest in the hypolimnion at deep sites during summer stratification when the decay of aquatic organisms and organic debris in the bottom sediments release nutrients to the water. The concentrations of total inorganic nitrogen and total phosphorus near the reservoir bottom at site A_{C} during summer stratification averaged about 2.75 and 0.59 mg/L, respectively. The concentrations of both nutrients in water at the surface during the summer averaged less than 0.10 mg/L throughout the reservoir. During winter circulation, the nutrient concentrations did not vary with depth.

The concentrations of dissolved solids, dissolved chloride, and dissolved sulfate during the 1973-82 water years averaged generally less than 120, 22, and 10 mg/L, respectively. During summer periods of thermal stratification, the concentrations of dissolved solids at deep sites averaged 50 to 60 mg/L greater in the hypolimnion than in the epliminion.

The density and composition of algal populations varied seasonally. At site A_C total algae counts ranged from 2,400 cells/mL to 110,000 cells/mL. At site G_C algae counts ranged from 2,100 cells/mL to 200,000 cells/mL. Algae densities were greatest during the summer when blue-green algae were the predominant types.

SELECTED REFERENCE'S

- Dowell, C. L., and Petty, R. G., 1973, Dams and reservoirs in Texas, Part 2: Texas Water Development Board Report 126, 327 p.
- Ferguson, F. A., 1968, A nonmyopic approach to the problem of excessive algal growth: Environmental Science and Technology, volume 2, p. 188-193.
- Greeson, P. E., 1971, The limnology of Oneida Lake with emphasis on factors contributing to algal blooms: U.S. Geological Survey open-file report, 185 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water (2d ed.): U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Hutchinson, G. E., 1957, A treatise on limnology; Volume I, Geography, physics, and chemistry: New York, John Wiley and Sons, 1015 p.
- Palmer, M. C., 1977, Algae and water pollution: U.S. Environmental Protection Agency, 123 p.
- U.S. Environmental Protection Agency, 1976 [1977], Quality Criteria for water, 1976: Washington, D.C., U.S. Government Printing Office, 256 p.
- 1977a, National interim primary drinking water regulations: Office of Water Supply, EPA-570/9-76-003, 159 p.
 - 1977b, National secondary drinking water regulations: Federal Register, v. 42, no. 62, part I, p. 17143-17147.
- U.S. Geological Survey, 1974-75, Water resources data for Texas, 1973-74--Part 2. Water-quality records: Austin, U.S. Geological Survey Water-data Reports (published annually).
- U.S. Geological Survey, 1976-82, Water-resources data for Texas, Water years 1975-81, Volumes 1-3: Austin, U.S. Geological Survey Water-Data Reports, TX-75-1 to TX-82-1, TX-75-2 to TX-82-2, and TX-75-3 to TX 82-3 (published annually).
- Weast, R. C., 1975, Handbook of chemistry and physics (56th ed.): Cleveland, Ohio, CRC Press, 2350 p.
- Wells, F. C., and Schertz, T. L., 1984, Computation and use of volume-weightedaverage concentrations to determine long-term variations of selected waterquality constituents in lakes and reservoirs: U.S. Geological Survey Water Resources Investigations Report 83-4287, 8 p.
- Wetzel, R. G., 1975, Limnology: Philadelphia, W. B. Saunders Co., 743 p.

TABLE 1.--Chemical-quality survey of Lake Conroe, Sept. 19, 19/3

302127095335501 SITE A_C

DATE	TIM	E	SAM- PLIN DEPT (FER	C NG D TH A	PE- IFIC ON- UCT- NCE MHOS)	PH (STA AR UNIT	ND- D	TEMP ATU (DEG	RE	PA	K)			OXYGH DIS SOLV (PE) CE! SATI	S- VED R- NT JR-	HARD- NESS (MG/L AS CACO3)	
SEP 19 19 19 19 19 19	100 100 100 100 100 101 101	2 4 6 8 0 2	1. 10. 15. 20. 25. 30. 35.	.0 .0 .0	186 186 186 186 186 186 191 311		7.6 7.6 7.1 6.9 6.8 6.8 6.6	2 2 2 2 2 2	7.5 7.5 7.5 6.5 6.5 6.0 4.5 2.5	1	.80		6.9 6.3 4.0 1.2 .2 .2		86 79 50 15 2 2 2	69 100	
DATE	HARD NESS NONCA BONAT (MG/ CACO	R- E L	CALCI DIS- SOLV (MG/ AS (IUM • /ED S /L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODI DIS SOLV (MG AS	ED	SOD A SOR TI RAT	D- P- ON	BIC BON FET- (MG AS	FLD /L	ALK LINI FIE (MG AS CAC	TY LD /L	SULFA DIS- SOLV (MGAS SO	- VED VL	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
SEP 19 19 19 19 19 19		2	24 35		2.2	12	.2		.5		82 126		6/	<		14 18	
D	ATE	RII Di SOI (M)	UO- DE, IS- LVED G/L F)	SILICA DIS- SOLVE (MG/L AS SIO2)	, SUM CON D TUE D SO	IDS, OF STI- NTS; IS- LVED	G NO2 TO (M	TRO- EN; +NO3 TAL G/L N)	G AMM TO (M	TRO- EN, ONIA TAL G/L N)	PHO TO (M	OS- RUS, TAL G/L P)	D SO (U	ON, IS- LVED G/L FE)	NES Di SOI (UC	NGA- SE, IS- LVED G/L MN)	
1 1 1 1 1	P 9 9 9 9 9		.10	5. - - - - - 16	1 - - - -	97 168		.040	<	.010	1	.060		<10 <10 20 9400		<10 <10 <10 5000	
						30213	2095	33370	1 SI	TE A _l				OXYG)	EN.		
	DAT	Έ	TIN	ME D	AM- LING EPTH FEET)	SPE CIF CON DUC ANC (UMH	IC T- EE	PH (STA AR UNIT	ND- D	TEMI ATU (DEC	IRE	SOL	EN, S- VED /L)	SOL' (PE CE SAT ATI	S- VED R- NT UR-		
	SEP 10		103	20	1.00		186		1.7	5	7.5		6.1		84		

1.7 1.6 6.9 6.8 6.7 6.5

27.5 21.5 26.5 25.5 23.0 21.5 22.0

19... 19... 19... 19... 19... 1.00 10.0 20.0 30.0 40.0 45.0 50.0

TABLE 1.--Chemical-quality survey of Lake Conroe, Sept. 19, 1973-continued

302245095365301 SITE B_C

DATE	TIME	SAM- PLIN DEPI (FEE	IG DUCT TH ANCE	C PH - (STA AF	AND TEN	MPER- FURE EG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD - NESS (MG/L AS CACO3)
19 19 19 19	1100 1102 1104 1106	10.	0 1 0 1	96 96 96 35	7.6 7.6 7.1 6.5	28.0 27.5 27.5 26.0	1.50	6.4 6.1 3.5 .2	81 76 44 2	75 90
DATE	HARD- NESS, NONCAF BONATE (MG/I CACO3	CALCI CALCI DIS- SOLV (MG/	DIS ED SOLV L (MG/	M, SODI - DIS ED SOLV L (MG	IUM, S- SC /ED I	DDIUM AD- ORP- TION ATIO	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
SEP 19 19 19	-	4 26 - 4 32	2. 2.		3.5	.5	86	71 86	.8	13
.ם	ATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS-	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GE AMMO TOT (MG	NIA PHO	RUS, D TAL SO IG/L (U	RON, NE DIS- D DLVED SO UG/L (U	NG A- SE, IS- LVED G/L MN)
1 : 1 :	P 9 9 9	<.10 <.10	4.8 8.6	100	.010		010	.040	<10 3800	<10 1200
				3023	323095341	201 SI	TE Cc			
	DATE	TIP	SAM- PLIN IE DEPT (FEE	G DUC H ANC	FIC N- E CT- (ST CE A	PH TAND- ARD TTS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	SEP 19 19 19 19	. 112 . 112 . 112 . 113	2 10. 6 25. 8 30. 0 40.	0 0 0 0 0	189 189 189 189 197 218 234	8.0 7.6 7.5 7.5 6.8 6.8	28.0 27.5 27.0 27.0 25.5 24.0 24.0	7.5 6.5 5.9 5.9 .2 .2	95 81 73 73 2 2 2	

TABLE 1.--Chemical-quality survey of Lake Conroe, Sept. 19, 1973--continued $302320095334001 \ \mbox{SITE} \ \ C_{1}$

	DATE SEP 19 19 19	. 1	I ME 145 148 150 152	SAM-PLING DEPTH (FEET 10.0 20.0 25.0 33.0	CON DUC ANG	FIC N- CT-		ND - D	2 7 2 7 2 7	RE	OXYGEN DIS- SOLVEI (MG/L) 6	SOI (PE CE SAT ATI	S- VED	
					3024	44809	53741	01 S	ITE D	С				
DATE	TI ME	DE	M- I NG PTH EET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS	PI (STA	AND - RD	TEMP ATU (DEG	RE	TRAI PAI ENG (SECG DISI (M)	R- CY CHI K)	OXYGEN DIS- SOLVEI (MG/L	SOI , (PE CE) SAT	S- LVED	HARD- NESS (MG/L AS CACO3)
SEP 19 19 19	1215 1218 1220 1222	3 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	1.00 0.0 5.0 2.0	18 18 18 23	19 19	7.7 7.4 7.3 6.4	2 2	8.5 7.5 7.5 6.0	1	.20 	7 • · · · · · · · · · · · · · · · · · ·	5 9	94 81 74 4	69 81
DATE	HARD- NESS, NONCAR BONATE (MG/I CACO3	CAL R- DI: SO: (MX	CIUM S- LVED G/L CA)	MAG NE SIUN DIS- SOLVE (MG/I AS MG	I, SODI	S -		ИС	BICA BONA FET-1 (MG) AS HCO	ATE FLD /L	ALKA- LINITY FIELD (MG/L AS CACO3)	(MG	S- LVED :/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
SEP 19 19 19		2 2· - 3 2i		2.3	. -	9.4		.5		83 95	6: 7:	-	.6 -4	14 20
D	ATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DI SO (M A	ICA, S	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	G NO 2 TO (M	TRO- EN, +NO3 TAL G/L N)	G AMM TO (M	TRO- EN, ONIA TAL G/L N)	PHO TO (M	RUS, TAL G/L	IRON, DIS- SOLVED (UG/L AS FE)	NE D SO (U	NG A- SE, IS- LVED G/L MN)
1	P 9 9 9	<.10 <.10		4.8	98 130		.030		.010		.050	<10 3400		<10 1500

302607095360901 SITE Ec

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
19 19 19 19	1250 1252 1254 1256 1258 1300	1.00 10.0 20.0 25.0 30.0 38.0	188 188 188 188 238 337	7.8 7.4 7.1 6.8 6.4 6.3	27.5 27.0 26.5 26.5 25.5 25.5	.90	7.7 6.3 4.6 .5 .3	96 78 56 6 4 4	69
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
SEP 19 19 19 19	0	24	2.3	9.7	÷5 -4	122	100	.6	14
D.	RI D SO (M	DE, DI DIS- SC DLVED (N G/L A	LICA, SUM SS- CON DLVED TUE MG/L D AS SO	STI- G NTS, NO2 IS- TO LVED (M	TRO- NITEN, GEHOOF TAL TOTEN, AS	NIA PHO AL TO /L (M	RUS, D TAL SO G/L (U	ON, NE IS- D LVED SO G/L (U	NGA- SE, IS- LVED G/L MN)
1: 1: 1:	P 9 9 9 9 9	<.10 <.10	5.4		.050 <.	010 010 10 1	.050	<10 110 9000	<10 20 6200
				30271409	5372201 SI	TE F _C			
DATE	TIME	SAM~ PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
SEP 19 19	1330 1332 1334	1.00 10.0 17.0	188 189 200	7.4 7.0 6.6	28.5 27.5 27.5	1.40	6.6 4.5 .4	85 56 5	70 76
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS~ SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
SEP 19 19	- 4 - 7	24 26	2.4	9.5 9.8	.5	80 84	66 69	.8 .4	14 14
<i>ו</i> ם	RI D SO (M	DE, DI IS- SO LVED (M IG/L A	ICA, SUM S- CON LVED TUE G/L D S SO	STI- GI NTS, NO2- IS- TO' LVED (M	TRO- NITEN, GENOMENTAL TOTEN, CONTAL TOTEN, CONTAL TOTEN, CONTACT CONT	N, PH NIA PHO AL TO /L (M	RUS, D TAL SO G/L (U	ON, NE IS- D LVED SO G/L (U	NG A- SE, IS- LVED G/L MN)
19		<.10 <.10	4.7	104		010	.050	<10 1500	<10 880

TABLE 1.--Chemical-quality survey of Lake Conroe, Sept. 19, 1973--continued $303129095360501 \ \ SITE \ G_C$

DATE	TIE	1E	SAM- PLII DEPT (FEI	VG ГН	SPE- CIFI CON- DUCT ANCE (UMHO	- (ST	H AND- RD TS)	TEMP ATU (DEG	RE	P.A	K)	OXYGEN DIS- SOLVE (MG/I	D SO I, (P C CD SA	GEN, IS- LVED ER- ENT TUR- ION)	HARD- NESS (MG/L AS CACO3)
SEP 19 19 19 19	140 140 140 140 140)2)4)6		.0	2 2 3	33 43 91 93	7.0 6.9 6.7 6.7	2 2 2	7.5 7.5 6.0 6.0		.90			54 36 2 2 2	86 100
DATE	HARD NESS NONCA BONAT (MG/ CACO	S, AR- TE 'L	CALCI DIS- SOLV (MG,	- /ED /L	MAG N SIUI DIS- SOLV (MG/I AS MG	M, SOD DI ED SOL	IUM, S- VED G/L NA)	A SOR	ON		/L	ALKA- LINITY FIELD (MG/I AS CACO3	SUL DI SO (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
SEP 19 19 19		7 8	30 35		3.	 	2		.6		98 112	-	30 	4.8	19
Ī	DATE	RI D SO (M	UO- DE, IS- LVED G/L F)	SILI DIS SOL (MG AS SIO	CA, VED /L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NI G NO 2 TO	TRO- EN, +NO3 TAL IG/L	G AMM TO (M	TRO- EN, ONIA TAL G/L N)	PHOT TO: (MC	OS- RUS, FAL G/L P)	IRON, DIS- SOLVED (UG/L AS FE)	NES DI SOI (UG	GA- BE, S- VED (/L MN)
:	EP 19 19 19		.10	1	7.9 7	127 164		.060		.010		.070	80 890 1200		<10 580 700

TABLE 2.--Chemical-quality survey of Lake Conroe, February 13, 1974

30212/095335501 SITE A_C

	ATE	TI	ME	SAM- PLIN DEPT (FEE	C IG D 'H A	PE- IFIC ON- UCT- NCE MHOS)	(ST A	H AND- RD TS)	TEMI ATI (DEC	JRE	- I	(GEN, DIS- DLVED MG/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	AS	5 5 G/L	
13 13 13	3	10 10 10 10	15 18 20 22 24 26	1. 10. 20. 30. 40.	0 0 0	194 194 194 194 194		7.5 7.5 7.4 7.4 7.3 7.3		12.5	5))	9.4 9.4 9.2 9.0 8.6 8.5		88 88 85 83 80		74 76	
DATE	HARD NESS NONCA BONAT (MG/ CACO	s' R – E L	CALCI DIS- SOLV (MG/ AS C	UM ED L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG AS	ED	SOF	ION	BC FET (M	CCAR- DNATE C-FLD IG/L IS CO3)	ALK LINI FIE (MG AS CAC	TY LD /L	SULF DIS SOL (MG AS S	- VED /L	CHL RID DIS SOL (MG AS	Ey VED /L
FEB 13 13 13 13		5 6	25 26	 	2.8		2.2		.5		84 86		69		4.4	14	
DA	.TE	FLU RID DI SOL (MG AS	E, S- VED /L	SILIC DIS- SOLV (MG/ AS SIO2	A, SU CO ED TU L S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	G NO2 TO (M	TRO- EN, +NO3 TAL G/L N)	GI AMMO TOT	CAL G/L	PH PHC TC (1)	OS- PRUS, PTAL IG/L P)	D SO: (U)	ON, IS- LVED G/L FE)	NES DI SOI (UG	S- VED	
13 13 13 13	•••		.10		.1	99		.160	<-	010		.040		<10 <10 20		<10 <10 <10	
						3021	3209	53337	01 SI	TE	Αη						
	DAT	E	TIM		SAM- PLING DEPTH (FEET)	SPE CIF CON DUC ANC (UMH	IC I- ET- EE	PF (STA AF UNIT	ND- RD	AT	IPER- TURE IG C)	OXYG DI SOL (MG	S- VED	OXYG DI SOL' (PE CEI SATI	S- VED R- NT UR-		
	FEB 13. 13. 13. 13. 13.	• • • • • • • • • • • • • • • • • • •	103 103 104 104 104 104	8 0 2 4 6	1.00 10.0 20.0 30.0 40.0 50.0 61.0		194 194 194 194 194 194		7.5 7.5 7.5 7.5 7.5 7.4 7.4		12.5 12.0 12.0 12.0 11.5 11.5		9.4 9.3 9.1 9.0 8.7 8.6 8.3		88 86 84 83 79 78 75		

TABLE 2.~~Chemical~quality survey of Lake Conroe, February 13, 1974~~continued $302245095365301 \ \mbox{SITE B}_{\mbox{\scriptsize C}}$

	DATE	Т	I ME	SAN PLI DEF (FF	NG	CO DU AN	FIC N= CT=	(ST A	PH CAND = LRD TS)	AT	IPER- CURE CG C)	D SO	GEN, IS= LVED G/L)	D SO (P C SA	GEN, IS= LVED ER= ENT TUR= ION)	NE: (MC A:	G/L	
	13 13 13	1 1	000 002 004 006	1 0 2 0	.00		194 194 194 196		7.5 7.4 7.3 7.1		12.5 12.5 12.5 12.0		9.4 9.4 8.8 7.2		88 88 82 67		76 	
DATE	HAR NES NONC BONA (MG CAC	S, AR= TE /L	CALC: DIS- SOL' (MG) AS	VED /L	MAG SI DI SOL (MG AS	UM, S< VED /L	SODI DIS SOLV (MG AS	ED	A SOF	ON.	BIC BON FET- (MG AS HCO	ATE FLD /L	ALK LINI FIE (MG AS CAC	TY LD / L	SULF DIS SOL (MG AS S	▼ VED /L	CHLC RIDE DIS- SOLV (MG/ AS (E, VED /L
13 13 13		6	26	< < < < < < < < < < < < < < < < < < <	2	.8 ««	7	.4 ««		.4 ~~		86		71 ~~ ~~		4.0 ~~ ~~	12	« « « « « « « « « « « « « « « « « « «
	DATE	RI D SO (M	UO = DE, IS = LVED G/L F)	SILI DIS SOL (MG AS	VED /L	SUM CON: TUE! D: SO!	IDS, OF STI- NTS, IS- LVED G/L)	G NO 2 TO (M	TRO- EN, +N03 TAL G/L N)	G AMM TO (M	TRO-EN, ONIA TAL G/L N)	PHO TO (M	OS= RUS, TAL G/L P)	D SO (U)	ON, IS= LVED G/L FE)	NES DI SOI (UC	NG A = SE , I S = LVED G / L MN)	
	EB 13		.10		3.0		98		.180	<	.010		.040		<10		<10	
	13		< <		< <		<<		.310	<	.010		.070		50		<10	
							3023	2309	53412	01 S	ITE C	С						
	DA'	TE	1IT	1E	SAMPLI	NG TH	SPE CIF CON DUC ANC (UMH	IC T= E	PH (STA AR UNIT	ND<	TEMP: ATU: (DEG	RE	OXYGI DIS SOLV (MG)	S= /ED	OXYG DI SOL' (PE CE SATI	S= VED R= NT UR=		
	13 13 13 13	• • • •	111 111 112 112 112	8 20 22 24	1 10 20 30 40 48	.0 .0 .0		190 190 190 190 190		7.6 7.6 7.6 7.5 7.5 7.8	1: 1: 1: 1:	2.5 2.5 2.5 2.5 2.5 2.5	((((9.3 9.2 9.2 9.2 9.3		87 86 86 86 82 73		
							3023	2009	53340	01 S	ITE C	ì						
	DA	ГE	TIN	1E	SAM- PLII DEP: (FE)	NG CH	SPE CIF CON DUC ANC (UMH	I C T= E	PH (STA AR UNIT	ND < D	TEMPI ATUI (DEG	RE	OXYGI DIS SOLV (MG)	S= VED	OXYG DI SOL' (PE CEI SATI	S = VED R = NT JR =		
	FEB 13 13 13 13	• • •	110 110 110 110 110) 2) 4 6	1 10 20 30 36	0		190 190 190 190		7.6 7.6 7.6 7.5 7.4	13 12 13	3.0 3.0 2.5 2.5 2.5	ģ	0.6 0.6 0.4 0.0		91 91 88 84 73		

302448095374101 SITE D_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER = ATURE (DEG C)	(5	TRANS = PAR = ENCY SECCHI (M)	OXYGEN, DIS= SOLVED (MG/L)	OXYGEN DIS SOLVE (PER CENT SATUR	HARD NESS (MG/L
13 13 13	1140 1142 1144 1146	1.00 10.0 20.0 26.0) 177 177 177 177	7.5 7.5 7.1 7.1	13.0 13.0 12.0 12.0		.80	9.2 9.2 6.4 6.2	8 5	67 66 67 ee 69 ee 67 ee
DATE	HARD= NESS, NONCAR= BONATE (MG/L CACO3)	CALCIUN DIS= SOLVEE (MG/L AS CA)	DIS= SOLVED (MG/L	SODIUM, DIS= SOLVED (MG/L AS NA)	SODIUM AD= SORP= TION RATIO	FE (GICAR- CONATE T-FLD (MG/L AS ICO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFAT DIS= SOLVE (MG/L AS SO4	DIS- CD SOLVED (MG/L
13 13 13	8 <<	22 <<	<<	8.2	.5 «« ««		72 <<	59 == ==	•	4 14
D	RI 1 SC (1)	IDE, E DIS- 5 DLVED (MG/L	LICA, SU IS- CO SOLVED TU MG/L AS S	NSTI C ENTS, NO: DIS TO OLVED (1	GEN, 0 2+NO3 AM OTAL T MG/L (ITRO GEN, MONI OTAL MG/L SN)	PHO A PHO TO	RUS, TAL S G/L (RON, DIS- OLVED UG/L	MANGA= NESE, DIS= SOLVED (UG/L AS MN)
1 1	B 3 3 3	.10	3.0	90 	< <	<.01	< •	.050	70 70	<10 <10
				3026070	95360901	SITE	E E _C			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	(\$	FRANS- PAR- ENCY SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR	HARD NESS (MG/L
FEB 13 13 13 13	1220 1222 1224 1226 1228	1.00 10.0 20.0 30.0 36.0	180 180 180 180	7.4 7.4 7.4 7.2 7.2	13.0 12.5 12.5 12.5 12.5		.80	8.8 8.7 8.7 7.4 6.8	8 8 6	69 11 == 11 == 19 == 14 66
DATE	HARD = NESS, NO NCAR = BONATE (MG/L CACO3)	CALCIUM DIS= SOLVEE (MG/L AS CA)	DIS SOLVED (MG/L	SODIUM, DIS= SOLVED (MG/L AS NA)	SODIUM AD < SORP < TION RATIO	FE (BICAR- BONATE ET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFAT DIS- SOLVE (MG/L AS SO4	DIS= DIS= (MG/L
FEB 13 13 13 13	10 == == 9	23		7.9 8.4	.4	j	72 == 70	59 55 57	•	
D	RI 2 SC (1)	DE, E DIS= S DLVED (MG/L	LICA, SU IS- CO SOLVED TU MG/L AS S	NSTI (ENTS, NO. DIS TO DLVED (GEN, 0 2+NO3 AM DTAL T MG/L (ITRO GEN, MONI OTAL MG/L SN)	PHO PHO	RUS, TAL S G/L (RON, DIS= OLVED UG/L	MANGA= NESE, DIS= SOLVED (UG/L AS MN)
1 1 1	B 3 3 3 3	.10	4.2 4.7	93 ** ** 93	.270	<.01	0	.070	50 50 50 80	<10 <10 <10

TABLE 2.--Chemical-quality survey of Lake Conroe, February 13, 1974--continued

302714095372201 SITE F_C

OXYGEN,

DATE	T I ME		CI I< CO NG DU TH AN	CE	PH STAND« ARD NITS)	TEMPE: ATUR	P. El R< (SEC E DI:	ANS« AR« NCY CCHI SK) M)	OXYGEN DIS= SOLVE (MG/L	SOL , (PE CE D SAT	S < VED R < NT UR <	HARD- NESS (MG/L AS CACO3)
FEB 13 13	1240 1242 1244) 1	.00	144 144 144	7.2 7.2 6.8	14. 12. 11.	.0	.60	8. 7. 3.	7 5	84 70 34	52 ••
DATE	HARD - NESS, NONCAR BONATE (MG/L CACO3	CALC R= DIS SOL (MG	IUM S - D VED SO /L (M	IS< I LVED SC G/L (DDIUM, DIS< DLVED (MG/L AS NA)	SODIU AD SORP- TION RATIO	= BO1 = FET-	5/L 5	ALKA- LINITY FIELD (MG/L AS CACO3	SULF DIS SOL (MG) AS S	VED /L	CHLO = RIDE, DIS= SOLVED (MG/L AS CL)
FEB 13 13	<	7 17 :<	< < < < <	2.4 <<	6.8	•	.4 : <	55 <<	4! <-	•	3.0	13
D		FLUO = RIDE, DIS= SOLVED (MG/L AS F)	SILICA, DIS< SOLVED (MG/L AS S102)	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/I	F NI I = G S, NO 2 TO ED (M	TRO- EN, +NO3 A TAL G/L N)	NITRO = GEN, AMMONIA TOTAL (MG/L AS N)	PHO PHOR TOT (MG AS	RUS, TAL I/L	IRON, DIS< SOLVED (UG/L AS FE)	NES DI SOI (UC	NG A = SE, LS = LVED S/L MN)
1	B 3 3	<.10 <<	.9 	•	71 : <	.140	<.010 <.010		.070	150 210		<10 160
				303	3129095	360501	SITE G	:				
DATE	TIME	SAM PLI DEP (FE	CO! NG DU	FIC N= CT= (S CE	PH STAND = ARD NLTS)	TEMPER ATURE (DEG C	PA EN (SEC : DIS	CCHI SK)	OXYGEN DIS- SOLVEI (MG/L)	CE SAT	S< VED R< NT UR<	HARD = NESS (MG/L AS CACO3)
13 13 13 13	1315 1318 1320 1322 1324	5 10 20	.0	127 127 142 160 160	7.0 6.9 6.8 6.8	14. 14. 12. 12.	0 0 0	.30	7 • 8 7 • 9 4 • 9 4 • 8 4 • 8)) }	75 71 45 44 44	44 •• •• 56
DATE	HARD - NESS, NONCAR BONATE (MG/L CACO3	CALC: DIS- SOL' (MG)	IUM S: VED SO: /L (M	LS= D LVED SC G/L (DDIUM, DIS= DLVED [MG/L AS NA)	SODIU AD- SORP- TION RATIO	BON FET-	FLD /L	ALKA- LINITY FIELD (MG/L AS CACO3)	SULF. DIS SOL (MG AS SO	≺ VED /L	CHLO = RIDE, DIS= SOLVED (MG/L AS CL)
13 13 13 13	< <	6 14 • • • • • • • • • • • • • • • • • • •	< < < <	2.2	7.4	•	5	46 <= <= 53	38 43	= = ;	4.6 6.0	12 17
D.		FLUO = RIDE, DIS = SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	F N1' G G G N02- TO' MCD (MC	TRO- EN, +NO3 A TAL G/L N)	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	PHOR PHOR TOT (MG AS	US, AL : /L	IRON, DIS< GOLVED (UG/L AS FE)	NES DI SOI (UG	NG A= SE, SS= LVED I/L MN)
1 1 1	3 3 3 3	<.10 <	7.2	•	:	.210	<.010 		150	170		<10 == == 30

TABLE 3.--Chemical-quality survey of Lake Conroey April 29, 19/4

302127095335501 SITE Ac

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRA PA EN (SEC DIS (M	R- CY OXYO CHI D K) SO	SOI GENy (PE IS- CE LVED SAT	LS- LVED	HARD- NESS (MG/L AS CACO3)
APR 29 29 29 29 29	1500 1502 1504 1506 1508 1510	1.00 10.0 20.0 30.0 40.0 45.0	197 197 197 197 197 209	7.0 6.9 6.8 6.7 6.7	21.0 20.0 20.0 19.5 19.0 18.5	1	.80 	6.2 5.8 5.2 4.0 2.9	69 64 57 43 31 0	76 79
DATE	HARD- NESSy NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POT SI DI SOL (MG AS	UM; BON S- FET- VED (MO /L AS		TY LD J/L	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 29 29 29 29 29 29	6	27	2.2	7.8	-4		.3	86 92	71	5.1
D.	RI DI SO (M	DEy DI S- SO LVED (M G/L A	ICA SUM S- CON LVED TUE IG/L D SS SC	STI- G NTS, NO2 IS- TO LVED (M	TRO- NIT EN, GE +NO3 AMMO TAL TOT G/L (MG N) AS	N; NIA AL /L	PHOS-PHORUS; TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	NE: D SOI (UC	NGA- SE; IS- LVED G/L MN)
2: 2: 2: 2:	R 9 1 9 9 9		2.5	110 110	.120 .	140	.050	20 30 40		<10 <10 1800
				30213209	5333701 SI	TE A	1			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	ARD	TEMP ATU (DEG	ER- DI RE SOI	SOL GENY (PE IS- CE LVED SAT	S- VED	
	APR 29 29 29 29 29	1530 1532 1534 1536 1538 1540	1.00 10.0 20.0 30.0 40.0 49.0	197 197 197 197 197 197 210	7.0 7.0 6.9 6.8 6.8	2 2 1 1	0.5 0.5 0.0 9.5 9.0 7.5	6.4 6.2 5.7 4.0 2.4	70 68 62 43 26 0	

TABLE 3.--Chemical-quality survey of Lake Conroe, April 29, 1974--continued

302245095365301 SITE B_C

DATE	TIME			SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STA AF UNIT	ND – RD	TEMP ATU (DEG	RE	TRAN PAI ENC (SECC DISI (M)	R- CY CHI ()	OXYG E DIS SOLV (MG/	N, (- ED S	(YGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HAR NES (MG AS	SS /L
29 29 29 29	1400 1402 1404 1406	2 10	1.00 0.0 0.0 2.0	204 204 204 231		7.4 7.4 6.7 6.6	2 2	3.0 2.5 1.0 9.0	1.	40 	7	.3 .1 .8	84 81 31 0		79 81
DATE	HARD- NESS, NONCAF BONATE (MG/I CACO3	CALC R- DIS E SOI L (MC	CIUM S- LVED G/L CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	ED	SOD A SOR TI RAT	D- P- ON	POTA SIU DIS SOLV (MG/ AS R	IM, S- /ED /L	BICA BONA FET-F (MG/ AS HCO3	TE LI LD F L (ALKA- INITY FIELD (MG/L AS CACO3)	SULF DIS SOL (MG AS S	VED
APR 29 29 29 29		4 28		2.1		.7		.4 -4	3.	2 2		92 02	75 84		5.1
	ATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)		CA, SU S- CO LVED TU S/L S S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	G NO 2 TO (M	TRO- EN, +NO3 TAL G/L N)	G AMM TO (M	TRO- EN, ONIA TAL G/L	PHOR PHOR TOT (MG AS	RUS, TAL I/L	IRON, DIS- SOLVE (UG/L AS FE	. NE ED SC . (U	ANG A- ESE, DIS- DLVED IG/L S MN)	
	R 9 9	15		3.0	110	<	.100		.180		050		0	<10	
2	9 9	 14		 4.5	120		.010		.850		.100		-	1600	
					3023	12309	53/12	n 1 s	ITE C	_					
					3023	12309	33412	01 3	III C	2					
	DATE		I ME	SAM- PLING DEPTH (FEET)	SPE CIF CON DUC ANC	TIC I- CT- CE	PH (STA AR UNIT	ND- D	TEMPI ATUI (DEG	RE	OXYGE DIS SOLV (MG/	N, (YGEN, DIS- SOLVED (PER- CENT SATUR- ATION)		
	APR 29 29 29 29 29	1. 1. 1.	550 552 554 556 558 600	1.00 10.0 20.0 30.0 40.0 50.0		197 197 197 197 197		7.3 7.3 7.2 7.1 6.6	21 21 19	1.5 1.0 1.0	7 7	.6 .6 .4 .8 .9	85 85 82 76 10		
					3023	2009	53340	0 1 S	ITE C	1					
	DATE		I ME	SAM- PLING DEPTH (FEET)	SPE CIF CON DUC ANC (UMH	IC - T- E	PH (STA AR UNIT	0	TEMPE ATUE (DEG	ER- RE	OXYGE DIS SOLV (MG/	N, (- ED S	YGEN, DIS- SOLVED PER- CENT SATUR-		
	APR 29 29 29 29	1. 1. 1.	540 542 544 546 548	1.00 10.0 20.0 30.0 35.0		197 197 197 197 197		7.3 7.2 7.0 6.8 6.7	21 21 20	.5 .0 0.5	7 6 4	.4 .2 .7 .5	83 81 74 51 19		

302448095374101 SITE Dc

DATE	TI MI			SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PF (STA AF UNIT	ND ∽ RD	TEMP ATU (DEG	RE	P E (SE DI	ANS= AR= NCY CCHI SK) M)	SOI	EN, S= VED /L)	OXYG DI SOL (PE CE SAT ATI	S= VED R= NT UR=	HAF NES (MG AS CAC	SS F/L
APR 29 29 29	161 161 162 162	7 10 0 20	1.00 0.0 0.0 4.0	197 197 197 217		7.6 7.6 7.5 6.4	2 2	3.5 3.0 3.0 0.5		1.10		8.3 8.1 7.8		97 93 90 0		74 79
DATE	HARD- NESS NONCAI BONATI (MG/I CACO)	, CALC R≠ DIS E SOI L (MC	CIUM S= LVED G/L CA)	MAG NE = SIUM, DIS = SOLVED (MG/L AS MG)	SODI DIS SOLV (MG AS	S≃ ∕ED		ON	S D SO (M	TAS- IUM, IS- LVED G/L K)		/L	ALK LINI FIE (MG AS CAC	TY LD /L		S≠ LVED I/L
APR 29 29 29 29		4 26 0 28	**	2.2		3.6		.5		3.3		85 98		70 80		5.2 3.9
I	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DI: SOI	ICA, SU: S= CO: LVED TU: G/L I S S0	LIDS, M OF NSTI= ENTS, DIS= DLVED MG/L)	G NO 2- TO (M	TRO= EN, +NO3 TAL G/L N)	G I AMMO TO I	TRO- EN, ONIA FAL G/L N)	PH PHC TC (1)	HOS= DRUS, DTAL MG/L GP)	D SO (U	ON, IS= LVED G/L FE)	NE D SO (U	NG A= SE, IS= LVED G/L MN)	
	PR 29 29 29	16 16		1.8	100		.100		.130		.050		30 == 880		40 3100	
					3026	0709	53609	01 SI	TE	Еc						
DATE	TIME		NG	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STA AR UNIT	ND≈ D	TEMP ATU (DEG	RE	P E (SE DI	ANS- AR- NCY CCHI SK) M)	SOL	EN, S~ VED /L)	OXYGE DI: SOLV (PE) CE! SATI	S= VED R= NT VR=	HAR NES (MG AS CAC	S /L
APR 29 29 29 29 29 29	1700 1702 1704 1706 1708 1710	10 20 30 35 40	.00	196 196 196 196 226 226 226		7.6 7.5 7.4 7.0 6.5 6.5	2: 2: 2: 1:	2.5 2.5 2.0 1.5 9.0 8.5		1.50		8.0 7.8 7.8 6.8 .0		91 89 89 76 0		73 79
DATE	HARD- NESS, NONCAF BONATE / MG / L CACO 3	CALC TOIS SOI	.ved	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG AS	ED /L	SOD AI SOR: TIC RAT) - P - N	S D SO (MX	TAS- IUM, IS- LVED G/L K)		/L	ALKA LINI FIE (MG. AS CACO	ry LD /L	SULF DIS SOL (MG AS S	VED /L
APR 29 29 29 29 29 29	-	4 26 	 	2.0		.4		.4		3.4		84		69		5.3
D	OATE	CHLO= RIDE, DIS= SOLVED (MG/L AS CL)	SILI DIS SOI (MG AS	CA, SUNGE CON VED TUE /L I	LIDS, 4 OF NSTI= ENTS, DIS= DLVED 4G/L)	G I NO 2- TO 2	ΓAL G/L		AL /L	PHO TO (M	OS= RUS, TAL G/L P)	SO1	ON, IS- LVED G/L FE)	NE D SO (U	NG A- SE, IS- LVED G/L MN)	
2 2 2 2 2 2	PR 29 29 29 29 29	16		2.0	100	<.	.100		170 160 960 970		.040 .050 .510 .490		70 190 5600 5800		<10 280 3800 3700	

302714095372201 SITE F_C

DATE APR	TIM	(FE	I- COI NG DUI TH ANG ET) (UMI	FIC N- I CT- (ST CE A HOS) UNI	PH TAND- ARD LTS)	TEMPER- ATURE (DEG C)	DISK (M)	Y OXYO HI DI) SOI (MK	D SO SO SEN, (P IS- C LVED SA S/L) AT	GEN, IS- LVED ER- ENT TUR- ION)	HARD- NESS (MG/L AS CACO3)
29 29 29	174 174 174 174	2 10 4 15	.00 0.0 0.0	196 196 196 215	7.4 7.2 7.1 6.2	23.5 23.0 22.5 21.0	, ,	50 	7.9 7.0 6.4 .0	92 80 73 0	74 76
DATE	HARD NESS NONCA BONAT (MG/ CACO	, CALC R- DIS E SOL L (MG	CIUM S S- D VED SO /L (M	IS- DI LVED SOI G/L (1	DIUM, IS- LVED MG/L S NA)	SODIUM AD- SORP- TION RATIO	POTA SIU DIS SOLV (MG/ AS K	M, BOI - FET- ED (MC L A	NATE LIN -FLD FI G/L (M S A	KA- ITY ELD G/L S CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 29 29 29 29		7 26 5 26		2.1 2.6 1	8.4	.4			82 86	67 71	5.8
D	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVEI (MG/L)	NI: - G1 , NO2- TO:) (MC	EN, HNO3 AM FAL T G/L (ITRO- GEN, IMONIA OTAL MG/L S N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	NE D SO (U	NGA- SE, IS- LVED G/L MN)
2	9	17	1.9	100	. ·	.100	.090	.050	40		<10
2	29	21	3.0	120		.100	.220	.070	1600		1400
				303	12909.	5360501	SITE GC		0.8.80	GEN,	
DATE	TIM	SAM PLI E DEP (FE	I- COI NG DUC TH ANG	FIC N- I CT- (ST CE A	PH TAND- ARD TS)	TEMPER- ATURE (DEG C)	DISK)	- Y OXYO HI DI SOI	D SO SEN, (P LS- C LVED SA	IS- LVED ER- ENT TUR- ION)	HARD- NESS (MG/L AS CACO3)
APR 29 29 29	1830 1832 1834 1836	2 10 4 20	.00 .0 .0	215 260 335 381	6.9 6.9 6.6 6.5	23.5 23.0 20.0 19.5		90 	5.6 4.4 .0	65 51 0 0	85 120
DATE	HARD- NESS, NONCAL BONATE (MG/I CACOS	CALC R- DIS SOL (MG	IUM ST - DI VED SOI /L (MG	IS- DI LVED SOI I/L (N	OIUM, S- LVED IG/L S NA)	SODIUM AD- SORP- TION RATIO	POTAL SIUI DIS- SOLVI (MG/I AS K)	M, BON - FET- ED (MG L AS	NATE LIN -FLD FI G/L (M G A	ELD G/L	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 29 29	-	10 30	 	2.5 1	4	.7		5	92	75 	7.2
29		19 41	3	3.4 2	:3	1	3.6	5	120	98	8.6
D	ATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NIT GE NO2+ TOT (MG	EN, NO3 AM CAL T	ITRO- GEN, MONIA I OTAL MG/L S N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	NE D SO (U	NGA- SE, IS- LVED G/L MN)
2 2	R 9 9 9	28	4.9 11	140	<.	100 100 100 100	.150 .160 .410 .600	.080 .100 .390 .590	50 140 1700 3300		160 290 2000 1900

TABLE 4.--Chemical-quality survey of Lake Conroe, August 30, 1974

302127095335501 SITE A_C

DATE	TIME		SAM- PLIN DEPT (FEE	CC CC G DI H AI	PE- IFIC DN- UCT- UCE WHOS)	PH (STA AR UNIT	ND- RD	TEMPI ATUI (DEG	RE	(SI	RANS- PAR- ENCY ECCHI ISK) (M)	OXYG DI SOL (MG	S- VED	OXYGEN DIS- SOLVE (PER- CENT SATUE ATION	D H N	ARD- ESS MG/L AS ACO3)
30 30 30 30 30	0855 0858 0900 0902 0904	;) :	1. 10. 20. 30. 40.	0 0 0 0	219 219 219 240 250 287		7.0 7.0 6.9 6.8 6.7	27 27 26 22	3.0 3.5 3.5 3.0 2.5		1.50		4.1 3.7 2.4 .1 .2	4	2 6 0 1 2 2	84 100
DATE	HARD- NESS, NONCAR BONATE (MG/I CACO3	C - :	ALCI DIS- SOLV (MG/ AS C	UM S ED SO L (1	GNE- GIUM, DIS- DLVED MG/L MG)	SODI DIS SOLV (MG AS	ED	SODI AI SORI TIC RATI)-)-	S(OTAS- SIUM, DIS- OLVED MG/L S K)	BIC. BON. FET-I (MG AS HCO.	ATE FLD /L	ALKA- LINITY FIELD (MG/L AS CACO3	SU D S	LFATE IS- OLVED MG/L SO4)
AUG 30 30 30 30	-	6	29 36	 	2.7				.5		3.5		95 145	-	8	4.3
D	ATE	CHLO RIDE DIS- SOLV (MG/ AS C	ë ED L	SILICA DIS- SOLVEI (MG/L AS SIO2)	SUN CON TUE I	IDS; OF ISTI- ENTS; OIS- OLVED IG/L)	G1 NO2- TO (M0	TRO- ENy +NO3 TAL G/L N)	NIT GE AMMO TOT (MG AS	N; NI, AL /L	PH A PHC TC (M	IOS- DRUS; DTAL IG/L S P)	D SO (U	ON; IS- LVED G/L FE)	MANGA NESE; DIS- SOLVE (UG/L AS MN	D
3 3 3 3	G 0 0 0 0	18		3.3		120 170	<	.100		080	-	.040	1	70 90 1000	<1 <1 	- 0 -
	DATE	ı	TIM	PI E DI	.M- .ING .PTH 'EET)	SPE CIF CON DUC ANC	IC T-	PH (STAN ARI UNITS	ID - '	TEN A:	A ₁ MPER- rure eG C)	OXYG DI: SOL' (MG	S- VED	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	D	
	AUG 30 30 30 30	•	092 093 093 093 093	8 3 0 2 2 3 4 3 6 4	1.00 0.0 0.0 0.0 0.0 5.0		219 219 219 240 240 250 28/	6 6 6	.9 .9 .8 .7 .8		27.5 27.5 27.0 26.0 24.5 22.5 21.5		3.8 3.5 3.0 .4 .3 .4	4	8 4 7 5 4 5 4	

TABLE 4.--Chemical-quality survey of Lake Conroe, August 30, 1974--continued

302245095365301 SITE B_C

DATE	TIM	ΙE	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
30 30 30	083 083 083 083	2 4	1.00 10.0 20.0 27.0	221 221 221 237	7.1 7.1 7.1 6.7	28.0 28.0 28.0 28.0	1.20	4.2 4.1 4.0 1.4	53 52 51 18	82 89
DATE	HARD NESS NONCA BONAT (MG/ CACO	R- E L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP* TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
30 30 30		1 3	29 31	2.4	9.7 9.1	.5 .4	3.7	99 106	81 87	5.5 4.5
	DATE	CHLC RIDE DIS- SOLV (MG/ AS C	E, DI - SC /ED (M /L A	LICA, SUM SS- CON DLVED TUE MG/L D AS SO	STI- G NTS, NO2 IS- TO LVED (M	EN, G +NO3 AMM TAL TO G/L (M	ONÍA PHO TAL TO G/L (M	ORUS, D OTAL SO MG/L (U	ON, NE IS- D LVED SO G/L (U	NG A- SE, IS- LVED G/L MN)
3	30 30	17		3.4	120 <	.100	.040	.030	60 	60
	30	17		4.6		.100	.450	.050	890	980
					30232309	5341201 S	ITE C _C			
	DAT	E	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 30. 30. 30. 30. 30.	••	1000 1002 1004 1006 1008 1010	1.00 10.0 20.0 30.0 40.0 55.0	220 220 220 220 260 280	7.0 7.0 6.9 6.8 6.4 6.3	28.0 28.0 27.5 27.0 23.0 23.0	5.1 4.9 4.6 4.4 .4	65 62 58 54 5	
					30232009	5334001 S	ITE C _l			
	DAT	E	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	30. 30. 30. 30. 30.	••	0945 0948 0950 0952 0954	1.00 10.0 20.0 30.0 37.0	220 220 220 220 220 260	7.1 7.1 7.1 6.7 6.6	28.0 28.0 27.5 26.0 24.0	5.5 5.4 5.0 .4	70 68 62 5 5	

302448095374101 SITE D_C

	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMP ATU (DEG	ER- 1 RE SO	YGEN, (DIS- DLVED S	PER- N CENT (SATUR-	ARD- ESS MG/L AS ACO3)
	30 30 30 30	1020 1022 1024 1026	1.00 10.0 20.0 25.0	219 219 219 219	7.0 7.0 6.9 7.0	2 2	8.5 8.5 8.0 8.0	4.8 4.8 4.5 4.5	62 62 57 57	81 81
DATE	HARD NESS NONCA BONAT (MG/ CACO	, CALCI R- DIS- E SOLV L (MG/	DIS ZED SOLV L (MG/	M, SODI S- DIS ED SOLV L (MG	UM,	DIUM AD- RP- ION TIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	LINITY	SULFATE DIS- SOLVED (MG/L AS SO4)
30 30 30 30	•	2 28 4 28	2.		•5 -7	.5 -5	3.5	96 94		4.6 4.6
	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NIT GE AMMO TOT (MG AS	N, PI NIA PHO AL TO /L (1	ORUS, OTAL S MG/L (RON, N DIS- SOLVED S UG/L (ANG A- ESE, DIS- OLVED UG/L S MN)
•	AUG 30 30	17	3.3	120	<.100	•	040 	.040	20	<10
	30 30	17	3.2	110	<.100	•	200	.140	50	30
				3026	07095360	901 SI	TE E _C			
DATE	TIM	SAM- PLIN E DEPT (FEE	G DUCT	C PH - (STA AR	ND- TEMI D AT		TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	CENT SATUR-	HARD- NESS (MG/L AS CACO3)
30 30 30 30	. 105 . 105 . 105	2 10. 4 20. 6 30.	0 2 0 2 0 2	19 19 19	7.2 7.0 7.0	28.5 28.0 28.0 28.0 28.0	1.30	4.6 4.6 4.6 4.2	58 58 53	89 110
DATE	HARD NESS NONCA BONAT (MG/ CACO	, CALCI R- DIS- E SOLV L (MG/	DIS ED SOLV L (MG/	M, SODI - DIS ED SOLV L (MG	UM, A - SOI ED T: /L RA:	OIUM AD- RP- ION FIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	LINITY	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 30 30 30 30	• •	11 31 0 37	2. 3.	 	.5	.5	3.4	95 144		4.3 2.3
	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NIT GE AMMO TOT (MG AS	N, PI NIA PHO AL TO /L (1	ORUS, OTAL S MG/L (RON, N DIS- GOLVED S UG/L (ANG A- ESE, DIS- OLVED UG/L S MN)
	AUG 30	17	3.4	120	<.100	-	090	.040	110	20
	30 30	18	8.1	170	<.100 <.100	1.	100	.040	690 8700	600 4800

TABLE 4.--Chemical-quality survey of Lake Conroe, August 30, 1974--continued

302714095372201 SITE Fc

!	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
	UG 30 30	1130 1132 1134	1.00 10.0 21.0	220 220 244	6.9 6.8 6.4	29.0 28.5 28.5	3.6 3.0 1.2	46 38 15	88 97
DATE	HARD- NESS, NONCAR BONATE (MG/L CACO3	SOLV (MG/	DIS- ED SOLVI L (MG/1	M, SODI - DIS ED SOLV L (MG	UM, A - SOF ED TI	AD- SI RP- DI ON SOI	TAS- BIC IUM, BON IS- FET- LVED (MG G/L AS K) HCO	ATE LINIT FLD FIEL /L (MG, AS	TY SULFATE LD DIS- /L SOLVED (MG/L
30 30 30	1 -		2.5		.9		2.4	95 108	78 4.1
1		CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS-	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
	บG 30 30	18	3.5	120	<.100	.100	.040	110	50
:	30	19	7.0	140	.050	.640	.100	3800	1800
				3031	290953605	01 SITE (3 _C		
DATE	TIME	SAM- PLIN DEPT (FEE	G DUCT- H ANCE	PH - (STA AR	ND- TEMP D ATU	PA EI PER- (SEC URE DIS	ANS- AR- NCY OXYG CCHI DI SK) SOL 4) (MG	S- CEI VED SAT	S- VED HARD- R- NESS NT (MG/L JR- AS
30 30 30 30	1205 1207 1210 1212	1. 10. 20. 35.	0 24	47 47 47 47	6.9 2 6.9 2	8.0 7.5 7.5 8.0		4.0 3.9 3.8 3.8	51 90 49 48 48 90
DATE	HARD- NESS, NONCAR BONATE (MG/L CACO3	SOLV (MG/	DIS- ED SOLVI L (MG/)	M, SODI - DIS ED SOLV L (MG	UM, A - SOR ED TI /L RAT	D- SI P- DI ON SOI	FAS- BIC IUM, BON IS- FET- LVED (MG G/L AS K) HCO	ATE LINIT FLD FIEI /L (MG) AS	TY SULFATE LD DIS- /L SOLVED (MG/L
AUG 30 30	-	5 31	3.0) 11	* ·	.5 3	3.7	104	85 4.0
30 30	-	9 31	3.	1 12		.6	3.5	99	81 4.7
1		CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, S	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
;	UG 30 30	21	6.1	130	<.100	.180	.070	120	<10
	30	21	5.6	130	.010	.060	.070	130	60

TABLE 5.--Chemical-quality survey of Lake Conroe, Feburary 12, 1975

302127095335501 SITE A_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB 12 12 12 12 12	1130 1132 1134 1136 1138 1140	1.00 10.0 20.0 30.0 40.0 47.0	206 206 206 206 206 206	8.0 7.9 7.8 7.6 7.6 7.6	13.5 13.0 13.0 13.0 13.0	1.00	7.3 7.3 7.3 7.2 7.2 7.2	70 69 69 68 68	76 76
DATE	HARD- NESSy NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUMy DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
FEB 12 12 12 12 12	5 4	27 27	2.2	8.5	.4	3.1	88 88	72 72	4.8
DATE	CHLO- RIDE y DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICAy DIS- SOLVED (MG/L AS SIO2)	SOLIDSY SUM OF CONSTI- TUENTSY DIS- SOLVED (MG/L)	NITRO- GEN _V NO2+NO3 TOTAL (MG/L AS N)	NITRO- GENY AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS; TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE; DIS- SOLVED (UG/L AS MN)
FEB 12 12 12 12 12	15 16	.10	4.6	110 110	.230	.030	.030	20 <10 20	<10 <10 <10
				30224509	5365301 S	ITE Bc			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGENY DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
12 12 12	1100 1102 1104 1106	1.00 10.0 20.0 30.0	206 210 210 216	7.6 7.5 7.5 7.3	13.0 13.0 12.5 12.5	.80	7.3 7.2 7.1 7.0	69 66 65	79 83
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUMy DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUMy DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
12 12 12 12	3 3	28 === 30	2.2	7.8	.4 .4	3.2	93 98	76 80	4.6 5.2

TABLE 5.- Chemical-quality survey of Lake Conroe, February 12, 1975--continued $302245095365301 \ \mbox{SITE B}_{\mbox{\scriptsize C}}-\mbox{continued}$

DATE FEB 12 12 12	CHLO-RIDE, DIS-SOLVED (MG/L AS CL)	FLUO-RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITROGEN, AMMONIA TOTAL (MG/L AS N)	PHOS-PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE) 40 20 30	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
			30232	309534120	1 SITE Co	:		OVVCEN	
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	FEB 12 12 12 12	1200 1202 1204 1206 1208	1.00 10.0 20.0 30.0 40.0	205 205 205 205 205 205	7.7 7.6 7.6 7.6 7.6	13.5 13.0 13.0 13.0 13.0	7.1 7.3 7.3 7.3 7.3	68 69 69 69	
				30244809	5374101 S	ITE D _C			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB 12 12 12	1220 1222 1224 1226	1.00 10.0 20.0 33.0	210 210 210 210	7.5 7.5 7.5 7.5	13.0 13.0 13.0 13.0	1.10	8.0 8.0 8.0	75 75 75 75	75 74
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
FEB 12	5	26	2.5	9.4	.5	3.0	85	70	4.9
12 12	 3	26	2.2	9.4	 -5	3.3	 86	71	5.0
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB 12 12 12 12	17 18	.10	5.0	110 110	.180	.030	.020	20 20	<10 90

302607095360901 SITE Ec

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB 12 12 12 12	1415 1418 1420 1422 1424	1.00 10.0 20.0 30.0 42.0	204 204 204 204 204	7.4 7.4 7.4 7.4 7.3	13.0 13.0 13.0 13.0 13.0	.90	7.2 7.2 7.2 7.1 7.0	68 68 67 66	76 74
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CAC03)	SULFATE DIS- SOLVED (MG/L AS SO4)
FEB 12	9	27	2.2	9.0	.5	2.9	83	68	5.5
12 12									
12 12		26	2.2	9.0	.5	3.3	83	68	5.7
	· ·	20	2.2		• 5	3.3	03	08	3.7
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
FEB 12	17	.10	5.3	110	.230	.040	.020	20	<10
12									
12 12					.230	.050	.030	40 	<10
12	17	.10	5.6	110	.230	.050	.040	<10	<10
				30271409	5372201 SI	ITE F _C			
				30271409	5372201 SI	ITE F _C			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND-ARD UNITS)	5372201 SI TEMPER- ATURE (DEG C)	TRANS-PAR-ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB		PLING DEPTH (FEET)	CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	NESS (MG/L AS CACO3)
	TIME 1300 1302 1304	PLING DEPTH	CIFIC CON- DUCT- ANCE	PH (STAND- ARD	TEMPER- ATURE	TRANS- PAR- ENCY (SECCHI DISK)	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	NESS (MG/L AS
FEB 12 12	1300 1302	PLING DEPTH (FEET) 1.00 10.0	CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND-ARD UNITS)	TEMPER-ATURE (DEG C)	TRANS-PAR-ENCY (SECCHI DISK) (M)	DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	NESS (MG/L AS CACO3)
FEB 12 12 12 DATE FEB	1300 1302 1304 HARD- NESS, NONCAR- BONATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 21.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 199 199 199 MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	PH (STAND-ARD UNITS) 7.2 7.2 7.0 SODIUM, DIS- SOLVED (MG/L AS NA)	TEMPER-ATURE (DEG C) 14.0 13.0 13.0 SODIUM AD-SORP-TION RATIO	TRANS-PAR-ENCY (SECCHI DISK) (M) 90 POTAS-SIUM, DIS-SOLVED (MG/L AS K)	DIS- SOLVED (MG/L) 6.8 7.0 7.0 7.0 BICAR- BONATE FET-FLD (MG/L AS HCO3)	DIS-SOLVED (PER-CENT SATUR-ATION) 65 66 66 ALKA-LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 69 69 SULFATE DIS- SOLVED (MG/L AS SO4)
TEB 12 12 12	1300 1302 1304 HARD- NESS, NONCAR- BONATE (MG/L	PLING DEPTH (FEET) 1.00 10.0 21.0 CALCIUM DIS- SOLVED (MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 199 199 199 MAG NE- SIUM, DIS- SOLVED (MG/L	PH (STAND-ARD UNITS) 7.2 7.0 SODIUM, DIS- SOLVED (MG/L	TEMPER-ATURE (DEG C) 14.0 13.0 13.0 SODIUM AD-SORP-TION	TRANS-PAR-ENCY (SECCHI DISK) (M) 90 POTAS-SIUM, DIS-SOLVED (MG/L	DIS- SOLVED (MG/L) 6.8 7.0 7.0 7.0 BICAR-BONATE FET-FLD (MG/L AS	DIS- SOLVED (PER- CENT SATUR- ATION) 65 66 66 ALKA- LINITY FIELD (MG/L AS	NESS (MG/L AS CACO3) 69 69 SULFATE DIS- SOLVED (MG/L
TEB 12 12 12 DATE FEB 12	1300 1302 1304 HARD- NESS, NONCAR- BONATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 21.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 199 199 199 MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	PH (STAND-ARD UNITS) 7.2 7.2 7.0 SODIUM, DIS- SOLVED (MG/L AS NA)	TEMPER-ATURE (DEG C) 14.0 13.0 13.0 SODIUM AD-SORP-TION RATIO	TRANS-PAR-ENCY (SECCHI DISK) (M) 90 POTAS-SIUM, DIS-SOLVED (MG/L AS K)	DIS- SOLVED (MG/L) 6.8 7.0 7.0 7.0 BICAR-BONATE FET-FLD (MG/L AS HCO3)	DIS- SOLVED (PER- CENT SATUR- ATION) 65 66 66 ALKA- LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 69 69 SULFATE DIS- SOLVED (MG/L AS SO4)
DATE FEB 12 12 12	1300 1302 1304 HARD- NESS, NONCAR- BONATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 21.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 199 199 199 MAG NE- SIUM, DIS- SOLVED (MG /L AS MG)	PH (STAND-ARD UNITS) 7.2 7.2 7.0 SODIUM, DIS-SOLVED (MG/L AS NA)	TEMPER-ATURE (DEG C) 14.0 13.0 13.0 SODIUM AD-SORP-TION RATIO	TRANS-PAR-ENCY (SECCHI DISK) (M) 90 POTAS-SIUM, DIS-SOLVED (MG/L AS K)	DIS- SOLVED (MG/L) 6.8 7.0 7.0 BICAR-BONATE FET-FLD (MG/L AS HCO3)	DIS-SOLVED (PER-CENT SATUR-ATION) 65 66 66 ALKA-LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 69 69 SULFATE DIS- SOLVED (MG/L AS SO4)
DATE FEB 12 12 DATE FEB 12 12 DATE	1300 1302 1304 HARD- NESS, NONCAR- BONATE (MG/L CACO3) 7- 8 CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	PLING DEPTH (FEET) 1.00 10.0 21.0 CALCIUM DIS- SOLVED (MG/L AS CA) 24 FLUO- RIDE, DIS- SOLVED (MG/L AS F)	CIFIC CON- DUCT- ANCE (UMHOS) 199 199 199 MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 2.3 2.3 SILICA, DIS- SOLVED (MG/L AS SOLVED (MG/L AS SOLVED)	PH (STAND-ARD UNITS) 7.2 7.2 7.0 SODIUM, DIS-SOLVED (MG/L AS NA) 9.4 9.0 SOLIDS, SUM OF CONSTITUENTS, DIS-SOLVED (MG/L)	TEMPER-ATURE (DEG C) 14.0 13.0 13.0 SODIUM AD-SORP-TION RATIO .5 .5 NITRO-GEN, NO2+NO3 TOTAL (MG/L AS N)	TRANS-PAR-ENCY (SECCHI DISK) (M) 90 POTAS-SIUM, DIS-SOLVED (MG/L AS K) 3.1 3.0 NITRO-GEN, AMMONIA TOTAL (MG/L AS N)	DIS- SOLVED (MG/L) 6.8 7.0 7.0 BICAR- BONATE FET-FLD (MG/L AS HCO3) 77 76 PHOS- PHORUS, TOTAL (MG/L AS P)	DIS-SOLVED (PER-CENT SATUR-ATION) 65 66 66 ALKA-LINITY FIELD (MG/L AS CACO3) 63 62 IRON, DIS-SOLVED (UG/L AS FE)	MESS (MG/L AS CACO3) 69 69 SULFATE DIS- SOLVED (MG/L AS SO4) 5.3 5.7 MANGA- NESE, DIS- SOLVED (UG/L AS MN)
DATE FEB 12 12 DATE FAB 12 12	1300 1302 1304 HARD- NESS, NONCAR- BONATE (MG/L CACO3) 7-8 8 CHLO- RIDE, DIS- SOLVED (MG/L	PLING DEPTH (FEET) 1.00 10.0 21.0 CALCIUM DIS—SOLVED (MG/L AS CA) 24 24 FLUO-RIDE, DIS—SOLVED (MG/L)	CIFIC CON- DUCT- ANCE (UMHOS) 199 199 199 199 MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 2.3 SILICA, DIS- SOLVED (MG/L AS AG)	PH (STAND-ARD UNITS) 7.2 7.2 7.0 SODIUM, DIS-SOLVED (MG/L AS NA) 9.4 9.0 SOLIDS, SUM OF CONSTITUENTS, DIS-SOLVED	TEMPER-ATURE (DEG C) 14.0 13.0 13.0 13.0 SODIUM AD-SORP-TION RATIO .5 .5 NITRO-GEN, NO2+NO3 TOTAL (MG/L	TRANS-PAR-ENCY (SECCHI DISK) (M) 90 POTAS-SIUM, DIS-SOLVED (MG/L AS K) 3.1 3.0 NITRO-GEN, AMMONIA TOTAL (MG/L (MG/L)	DIS- SOLVED (MG/L) 6.8 7.0 7.0 BICAR- BONATE FET-FLD (MG/L AS HCO3) 77 76 PHOS- PHORUS, TOTAL (MG/L	DIS-SOLVED (PER-CENT SATUR-ATION) 65 66 66 ALKA-LINITY FIELD (MG/L AS CACO3) 1 RON, DIS-SOLVED (UG/L	NESS (MG/L AS CACO3) 69 69 SULFATE DIS- SOLVED (MG/L AS SO4) 5.3 5.7 MANG A- NESE, DIS- SOLVED (UG/L

TABLE 5.--Chemical-quality survey of Lake Conroe, February 12, 1975--continued

303129095360501 SITE Gc

DATE	TIM	/ 1E	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS	Pi (STA	AND- RD	TEMF ATU (DEG	RE	SOL	EN, S- VED /L)	SO L (PE	S- VED R- NT UR-	NES (MC AS	J/L	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
FEB 12 12	133 133 133	2	1.00 10.0 18.0	14 14 15	5	6.9 6.9 6.9	1	2.5 2.5 2.5		6.5 6.5 6.5		61 61 61		44 47	- 7
DATE	CALCI DIS- SOLV (MG/ AS C	ED L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SO!	OIUM AD- RP- ION FIO	SI DI		BIC BON FET- (MG AS HCO	ATE FLD /L	ALK LINI FIE (MG AS CAC	TY LD /L		S- LVED S/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB 12 12	15 16		1.7	9.3 - 9.6	-	.6 .6		• 7 • 4		46 49		 40		6.4	15 17
O	ATE	FLUC RIDE DIS SOLV (MG/ AS F	E, DI S- SO VED (M	ICA, SI S- CI LVED T G/L S	OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED (MG/L)	G NO 2 · TO ' (MC	TRO- EN, +NO3 TAL G/L N)	G AMM TO (M	TRO- EN, ONIA TAL G/L N)	PHO TO (M	OS- RUS, TAL G/L P)	D SO (U	ON, IS- LVED G/L FE)	NE D SO (U	NGA- SE, IS- LVED G/L MN)
1	B 2 2		10	9.8 9.5	83 87		.060 .050 .060		.060 .080 .060		.120 .120 .120		160 210 140		40 40 50

TABLE 6.--Chemical-quality survey of Lake Conroe, May. 19, 19/4

30212/095335501 SITE A_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
19 19 19 19 19	1530 1532 1534 1536 1538 1540	1.00 10.0 20.0 30.0 40.0 55.0	208 208 208 215 215 241	7.6 7.2 7.1 7.0 7.0	25.5 24.5 24.0 22.0 20.0 19.5	1.50	4.8 3.3 2.1 1.6 1.6	58 39 25 18 17	/4 8/
DATE	HARD- NESSy NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
MAY 19 19 19 19 19	5 0	26 31	2.3	9.6	.5 .5	3.2	85 110	70 90	3./
DATE	CHLO- RIDE; DIS- SOLVED (MG/L AS CL)	FLUO- RIDE; DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN; NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN; AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY 19 19 19 19 19	17 17	.10	4.0	110 130	.010 .030 .200 <.100	<.010 .030 .020 .350	.010 .020 .010 .120	20 40 40 120	<10 80 560 3600
				30213209	5333/01 SI	TE A ₁			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	MAY 19 19 19 19	1505 1507 1510 1512 1514 1516	1.00 10.0 20.0 30.0 40.0 54.0	210 210 210 210 210 215 250	7.5 7.3 7.0 7.0 7.0	25.5 24.5 23.5 22.0 20.0 19.0	5.5 4.0 2.2 1.9 1.9	66 48 26 22 21 20	

TABLE 6.--Chemical-quality survey of Lake Conroe, May 19, 1975--continued

302245095365301 SITE B_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAY 19 19 19	1430 1432 1434 1436	1.00 10.0 20.0 29.0	206 206 210 226	8.1 7.1 6.9 6.8	27.5 26.5 25.0 24.0	1.00	6.2 3.4 1.9 1.9	78 41 23 22	76 81
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD 'MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
MAY 19 19 19	4 0	27 29	2.0	8.7	.5	3.1	88 100	72 82	3.3
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
MAY 19 19 19	16 15	.10	4.0 5.9	110	<.100 .010 <.100	<.010 .010 .520	.020 .020 .030	30 110 1100	<10 230 2300
				30232309	5341201 S	ITE Cc			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	MAY 19 19 19 19 19	1610 1612 1614 1616 1618 1620	1.00 10.0 20.0 30.0 40.0 47.0	208 208 210 213 220 225	7.9 7.9 7.8 7.0 7.0	25.0 25.0 24.5 22.0 20.5 21.0	4.0 4.0 4.0 3.0 2.0	48 48 48 34 22 22	
				30232009	5334001 S	ITE C1			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	MAY 19 19 19 19	1555 1557 1559 1601 1603 1605	1.00 10.0 20.0 30.0 40.0 47.0	206 205 205 210 215 220	8.1 8.0 8.0 7.0 7.0	26.0 25.5 25.0 22.5 21.0 20.5	6.7 6.2 5.0 2.1 2.1	82 75 60 24 23 23	

302448095374101 SITE Dc

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD - NESS (MG/L AS CACO3)
19 19 19	1630 1632 1634 1636	1.00 10.0 20.0 27.0	201 205 196 196	8.1 7.3 6.9 6.8	27.0 25.0 24.0 21.5	1.30	7.8 5.0 1.6	96 60 19 7	71 69
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
19 19 19	5 5	25 24	2.1	10 7.8	.5	3.1	80 78	66 64	3.6
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
19 19 19 19	18 16	.10	4.0 4.8	110 100	<.100 .020 <.100	<.010 .040 .080	.020 .010 .020	30 40 40	<10 60 410
				30260709	5360901 S	ITE E _C			
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
DATE MAY 19 19 19 19	TI ME 1700 1702 1704 1706 1708	PLING DEPTH	CIFIC CON- DUCT- ANCE	(STAND- ARD	ATURE	PAR- ENCY (SECCHI DISK)	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	NESS (MG/L AS
MAY 19 19 19	1700 1702 1704 1706	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0	CIFIC CON- DUCT- ANCE (UMHOS) 207 205 200 200	(STAND-ARD UNITS) 8.0 8.0 7.5 6.8	ATURE (DEG C) 25.5 25.5 25.0 23.0	PAR- ENCY (SECCHI DISK) (M)	DIS- SOLVED (MG/L) 6.9 6.8 5.7	DIS- SOLVED (PER- CENT SATUR- ATION) 83 82 68 5	NESS (MG/L AS CACO3)
MAY 19 19 19 19	1700 1702 1704 1706 1708 HARD- NESS, NONCAR- BONATE / MG/L	PLINC DEPTH (FEET) 1.00 10.0 20.0 30.0 37.0 CALCIUM DIS- SOLVED 'MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 207 205 200 200 242 MAG NE- SIUM, DIS- SOLVED (MG/L	(STAND-ARD UNITS) 8.0 8.0 7.5 6.8 7.1 SODIUM, DIS- SOLVED (MG/L	ATURE (DEG C) 25.5 25.5 25.0 23.0 21.5 SODIUM AD- SORP- TION	PAR-ENCY (SECCHI DISK) (M) 1.60 POTAS-SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L) 6.9 6.8 5.7 .4 .4 BICAR-BONATE FET-FLD (MG/L AS	DIS- SOLVED (PER- CENT SATUR- ATION) 83 82 68 5 4 ALKA- LINITY FIELD (MG/L AS	NESS (MG/L AS CACO3) 74 86 SULFATE DIS- SOLVED (MG/L
MAY 19 19 19 19 19 DATE MAY 19 19	1700 1702 1704 1706 1708 HARD- NESS, NONCAR- BONATE /MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 37.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 207 205 200 200 242 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG) 2.3	(STAND-ARD UNITS) 8.0 8.0 7.5 6.8 7.1 SODIUM, DIS- SOLVED (MG/L AS NA) 9.7	ATURE (DEG C) 25.5 25.5 25.0 23.0 21.5 SODIUM AD- SORP- TION RATIO	PAR-ENCY (SECCHI DISK) (M) 1.60 POTAS-SIUM, DIS- SOLVED (MG/L AS K) 3.3	DIS- SOLVED (MG/L) 6.9 6.8 5.7 .4 .4 BICAR-BONATE FET-FLD (MG/L AS HCO3)	DIS- SOLVED (PER- CENT SATUR- ATION) 83 82 68 5 4 ALKA- LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 74

302714095372201 SITE F_C

DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAY 19 19	1730 1732 1734	1.00 10.0 19.0	196 200 180	8.1 7.5 6.8	26.5 25.5 25.0	1.20	8.3 6.4 3.0	101 77 36	69 64
DATE	HARD- NESS, NONCAR- BONATE 'MG/L CACO3)	CALCIUM DIS- SOLVED /MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE D1S- SOLVED (MG/L AS SO4)
MAY 19	9	24	2.3	9.6	.5	3.0	74	61	3.5
19 19	8	22	2.1	9.3	.5	3.0	68	56	3.3
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS S102)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
MAY 19	18	.10	3.8	100	<.100	.010	.030	70	<10
19 19	16	.10	4.0	93	<.100 <.100	.010 <.010	.020 .020	40 70	<10 <10
				30312909	5360501 S	ITE G _C			
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
DATE MAY 19 19 19	TI ME 1800 1802 1804 1806	PLING DEPTH	CIFIC CON- DUCT- ANCE	(STAND- ARD	ATURE	PAR- ENCY (SECCHI DISK)	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	NESS (MG/L AS
MAY 19 19	1800 1802 1804	PLING DEPTH (FEET) 1.00 10.0 20.0	CON- DUCT- ANCE (UMHOS)	(STAND- ARD UNITS) 7.6 6.4 6.4	ATURE (DEG C) 26.5 24.0 23.0	PAR- ENCY (SECCHI DISK) (M)	DIS- SOLVED (MG/L) 7.8 1.6 1.0	DIS- SOLVED (PER- CENT SATUR- ATION)	NESS (MG/L AS CACO3)
MAY 19 19 19 DATE MAY 19	1800 1802 1804 1806 HARD- NESS, NONCAR- BONATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 20.0 35.0 CALCIUM DIS- SOLVED (MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 154 115 118 121 MAG NE- SIUM, DIS- SOLVED (MS/L AS MG) 1.8	(STAND-ARD UNITS) 7.6 6.4 6.4 6.4 SODIUM, DIS-SOLVED (MG/L AS NA) 9.0	ATURE (DEG C) 26.5 24.0 23.0 22.5 SODIUM AD- SORP- TION RATIO	PAR-ENCY (SECCHI DISK) (M) .70 POTAS-SIUM, DIS- SOLVED (MG/L AS K)	DIS- SOLVED (MG/L) 7.8 1.6 1.0 .4 BICAR- BONATE FET-FLD (MG/L AS HCO3)	DIS- SOLVED (PER- CENT SATUR- ATION) 95 19 11 5 ALKA- LINITY FIELD (MG/L AS CACO3)	NESS (Mg/L AS CACO3) 50 40 SULFATE DIS- SOLVED (Mg/L AS SO4)
MAY 19 19 19 19	1800 1802 1804 1806 HARD- NESS, NONCAR- BONATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 20.0 35.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 154 115 118 121 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	(STAND-ARD UNITS) 7.6 6.4 6.4 6.4 SODIUM, DIS-SOLVED (MG/L AS NA)	ATURE (DEG C) 26.5 24.0 23.0 22.5 SODIUM AD- SORP- TION RATIO	PAR-ENCY (SECCHI DISK) (M) .70 POTAS- SIUM, DIS- SOLVED (MG/L AS K)	DIS-SOLVED (MG/L) 7.8 1.6 1.0 .4 BICAR-BONATE FET-FET-FET-FET-FET-FET-FET-FET-FET-FET-	DIS- SOLVED (PER- CENT SATUR- ATION) 95 19 11 5 ALKA- LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 50 40 SULFATE DIS- SOLVED (MG/L AS SO4)
MAY 19 19 19 DATE MAY 19 19	1800 1802 1804 1806 HARD- NESS, NONCAR- BONATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 20.0 35.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 154 115 118 121 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG) 1.8	(STAND-ARD UNITS) 7.6 6.4 6.4 6.4 SODIUM, DIS-SOLVED (MG/L AS NA) 9.0	ATURE (DEG C) 26.5 24.0 23.0 22.5 SODIUM AD- SORP- TION RATIO	PAR-ENCY (SECCHI DISK) (M) .70 POTAS-SIUM, DIS-SOLVED (MG/L AS K)	DIS- SOLVED (MG/L) 7.8 1.6 1.0 .4 BICAR- BONATE FET-FLD (MG/L AS HCO3)	DIS-SOLVED (PER-CENT SATUR-ATION) 95 19 11 5 ALKA-LINITY FIELD (MG/L AS CACO3)	NESS (Mg/L AS CACO3) 50 40 SULFATE DIS- SOLVED (Mg/L AS SO4)

TABLE 7.--Chemical-quality survey of Lake Conroey August 28, 1975

302127095335501 SITE Ac

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 28 28 28 28 28	1630 1632 1634 1636 1638 1640 1642	1.00 10.0 20.0 25.0 30.0 40.0 52.0	210 210 210 210 230 240 275	7.7 7.4 7.4 7.0 6.9 6.8	29.5 29.0 28.5 28.5 26.0 22.0 20.0	.90	6.2 4.8 4.6 4.6 .2 .2	81 62 59 59 2 2	77 95
DATE	HARD- NESSY NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM; DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 28 28 28 28 28 28	0 0	27 34	2.3	9.9	.5	3.1	94 140	77	4.5 2.0
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDEY DIS- SOLVED (MG/L AS F)	SILICAy DIS- SOLVED (MG/L AS SIO2)	SOLIDS; SUM OF CONSTI- TUENTS; DIS- SOLVED (MG/L)	NITRO- GEN; NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS; TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE; DIS- SOLVED (UG/L AS MN)
AUG 28 28 28 28 29 28	17	.20	4.6	110 160	<.100 <.100 <.100 <.100	<.010 <.010 <.010 <.010	.010 .010 .020	100 1100 4800	350 3200 5000
				30213209	5333701 SI	TE A ₁			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN; DIS- SOLVED (MG/L)	OXYGENY DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 28 28 28 28 28	1615 1617 1620 1622 1624 1626	1.00 10.0 20.0 30.0 40.0 53.0	210 210 210 230 240 275	7.7 7.4 7.3 7.0 6.9 6.6	29.5 28.5 28.5 26.5 21.5 20.0	6.4 5.1 4.5 .3 .3	83 65 58 4 3 3	

TABLE 7.--Chemical-quality survey of Lake Conroe, August 28, 1975--continued $302245095365301~{\rm SITE}~B_{\rm C}$

DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 28 28 28 28	1600 1602 1604 1606 1608	1.00 10.0 20.0 25.0 31.0	212 212 212 214 255	7.9 7.4 7.4 7.0 6.7	30.5 29.5 29.5 29.5 29.5 28.5	.90 	7.0 5.2 5.2 1.2	92 68 68 15 8	79 95
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 28 28 28 28	-4 0	28 34	2.2	9.4	.5 -4	3.0	92 130	75 107	3.0
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
AUG 28 28 28 28	18 17	.10	4.7 7.8	110 150	<.100 <.100 <.100	<.010 <.010 <.010	.090	20 250 3300	<10 200 2000
				30232309	5341201 S	ITE Cc			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 28 28 28 28 28 28	1715 1717 1719 1721 1723 1725 1727	1.00 10.0 20.0 25.0 30.0 40.0 47.0	208 208 208 208 230 270 280	7.9 7.5 7.4 7.3 7.0 6.8 6.8	30.0 29.0 29.0 28.5 26.5 22.0	6.8 5.2 5.0 4.3 .2 .2	89 67 64 55 2 2	
				30232009	5334001 S	ITE C ₁			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 28 28 28 28 28 28	1700 1702 1704 1706 1708 1710	1.00 10.0 20.0 30.0 40.0 47.0	208 208 208 230 270 270	7.9 7.4 7.4 7.0 6.8 6.9	30.0 29.0 28.5 26.5 22.0 22.0	6.6 5.0 4.5 .2 .2	87 64 58 2 2 2	

302448095374101 SITE D_C

DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
28 28 28 28	1740 1742 1744 1746	1.00 10.0 20.0 26.0	208 208 208 208	8.2 7.5 7.3 7.1	30.5 29.5 29.0 29.0	1.00	7.9 5.0 4.3 3.6	104 65 55 46	84 76
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 28 28 28	13	30 27	2.3	9.5 9.5	.5	3.0	88 88	72 72	3.1 3.4
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
AUG 28 28 28	18	.10	4.7 4.7	110 110	<.100 <.100 <.100	<.010 <.010 <.010	.060 .020 	210 60 60	20 20 100
				30260709	5360901 SI	TE EC			
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
AUG 28 28 28 28	1800 1802 1804 1806 1808	1.00 10.0 20.0 30.0 40.0	207 207 207 250 301	8.4 7.7 7.4 6.7 6.6	31.0 29.0 28.5 26.0 24.0	8.4 5.8 5.2 .2	112 74 67 2 2	84 110	13 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
AUG 28 28 28 28	30 41	2.3	9.6 9.8	.5 .4	3.0	88 150	72 123	3.9 <1.0	18 18
E	RI D SO (M	DE, DI IS- SO LVED (M G/L A	ICA, SUM S- CON LVED TUE G/L D S SO	STI- G NTS, NO2 IS- TO LVED (M	TRO- NIT EN, GE +NO3 AMMO TAL TOT G/L (MG	N, PH NIA PHO AL TO /L (M	RUS, D TAL SO G/L (U	ON, NE IS- D LVED SO G/L (U	NG A- SE, IS- LVED G/L MN)
2 2 2	JG 28 28 28 28	.10	4.6		.100 <.	270			40 270 4200 4900

302448095374101 SITE D_C

DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
28 28 28 28	1740 1742 1744 1746	1.00 10.0 20.0 26.0	208 208 208 208	8.2 7.5 7.3 7.1	30.5 29.5 29.0 29.0	1.00	7.9 5.0 4.3 3.6	104 65 55 46	84 76
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 28 28 28	13 5	30 27	2.3	9.5 9.5	.5 .5	3.0	88 88	72 72	3.1 3.4
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
AUG 28 28 28	18 18	.10 .10	4.7 4.7	110 110	<.100 <.100 <.100	<.010 <.010 <.010	.060 .020 	210 60 60	20 20 100
				30260709	5360901 S	ITE E _C			
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
DATE AUG 28 28 28 28	TI ME 1800 1802 1804 1806 1808	PLING DEPTH	CIFIC CON- DUCT- ANCE	(STAND- ARD	ATURE	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	NESS (MG/L AS	NESS, NONCAR- BONATE (MG/L
AUG 28 28 28	1800 1802 1804 1806	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0	CIFIC CON- DUCT- ANCE (UMHOS)	(STAND-ARD UNITS) 8.4 7.7 7.4 6.7	ATURE (DEG C) 31.0 29.0 28.5 26.0	DIS- SOLVED (MG/L) 8.4 5.8 5.2	DIS- SOLVED (PER- CENT SATUR- ATION)	NESS (MG/L AS CACO3)	NESS, NONCAR- BONATE (MG/L CACO3)
AUG 28 28 28 28	1800 1802 1804 1806 1808 CALCIUM DIS- SOLVED (MG/L	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 40.0 MAG NE- SIUM, DIS- SOLVED (MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 207 207 207 250 301 SODIUM, DIS- SOLVED (MG/L	(STAND- ARD UNITS) 8.4 7.7 7.4 6.7 6.6 SODIUM AD- SORP- TION	ATURE (DEG C) 31.0 29.0 28.5 26.0 24.0 POTAS- SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L) 8.4 5.8 5.2 .2 .2 BICAR- BONATE FET-FLD (MG/L)	DIS-SOLVED (PER-CENT SATUR-ATION) 112 74 67 2 2 ALKA-LINITY FIELD (MG/L AS	NESS (MG/L AS CACO3) 84 110 SULFATE DIS- SOLVED (MG/L	NESS, NONCAR- BONATE (MG/L CACO3)
AUG 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28	1800 1802 1804 1806 1808 CALCIUM DIS- SOLVED (MG/L AS CA) 30 41 FLI RII D SOL	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 40.0 MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 2.3 2.9 JO- DE, DIL IS- SOLVED DE, SOLVED LIS- SOLVED DE, SOLVED SILVED DE, SOLVED SILVED DE, SOLVED SILVED DE, SOLVED SILVED DE, SOLVED SILVED DE, SOLVED SILVED DE, SOLVED DE, SOLVED SILVED DE, SOLVED DE, SOLVED SILVED DE, SOLVED SILVED DE, SOLVED DE, SOLV	CIFIC CON- DUCT- ANCE (UMHOS) 207 207 207 250 301 SODIUM, DIS- SOLVED (MG/L AS NA) 9.6 9.8 SOLICA, SUM S- CON: LVED TUEL S SOLVED (S SOLVED S S SOLVED S S SOLVED S S SOLVED S S S S S S S S S S S S S S S S S S S	(STAND-ARD UNITS) 8.4 7.7 7.4 6.7 6.6 SODIUM AD-SORP-TION RATIO .554 IDS, OF NI'STI- NO2-STI-	ATURE (DEG C) 31.0 29.0 28.5 26.0 24.0 POTAS- SIUM, DIS- SOLVED (MG/L AS K) 3.0 3.6 TRO- EN, HNO3 AMMM GAL TOLER,	DIS-SOLVED (MG/L) 8.4 5.8 5.2 .2 2.2 BICAR-BONATE FET-FLD (MG/L AS HCO3) 88 150 TRO-EN, PH ONIA PHO G/L TO G/L (M	DIS-SOLVED (PER-CENT SATUR-ATION) 112 74 67 2 2 ALKA-LINITY FIELD (MG/L AS CACO3) 72 123 OS-IR RUS, D TAL SO G/L (U	NESS (MG/L AS CACO3) 84 110 SULFATE DIS- SOLVED (MG/L AS SO4) 3.9 <1.0 MA:	NESS, NONCAR- BONATE (MG/L CACO3) 130 CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 18

302714095372201 SITE F

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 28 28 28	1825 1827 1829 1831	1.00 10.0 15.0 24.0	205 205 205 214	8.5 7.4 7.4 6.7	31.0 29.5 29.5 29.0	1.00	9.0 4.5 4.5 .4	120 58 58 5	80 79
DATE	HARD- NESS, NONCAR- BO NATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 28 28 28	8 5	29 28	1.8	9.8 9.9	.5	3.0	88 92	72 75	3.7 3.4
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO 2+NO 3 TO TAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
AUG 28 28 28	17 19	.10	4.7 5.8	110 120	<.100 .010 .010	<.010 <.010 .070	.050 .020 	30 60 570	20 100 920
				30312909	5360501 SI	TE G			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
DATE AUG 28 28 28 28	TIME 1900 1902 1904 1906 1908	PLING DEPTH	CIFIC CON- DUCT- ANCE	(STAND- ARD	ATURE	PAR- ENCY (SECCHI DISK)	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	NESS (MG/L AS
AUG 28 28 28	1900 1902 1904 1906	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0	CIFIC CON- DUCT- ANCE (UMHOS) 218 218 218 218	(STAND-ARD UNITS) 8.2 7.3 7.1 7.1	ATURE (DEG C) 31.0 29.0 28.5 28.5	PAR- ENCY (SECCHI DISK) (M)	DIS- SOLVED (MG/L) 8.8 4.9 3.7 3.7	DIS- SOLVED (PER- CENT SATUR- ATION) 117 63 47 47	NESS (MG/L AS CACO3)
AUG 28 28 28 28	1900 1902 1904 1906 1908 HARD- NESS, NONCAR- BONATE (MG/L	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 35.0 CALCIUM DIS- SOLVED (MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 218 218 218 221 MAG NE- SIUM, DIS- SOLVED (MG/L	(STAND-ARD UNITS) 8.2 7.3 7.1 7.1 7.1 SODIUM, DIS-SOLVED (MG/L	ATURE (DEG C) 31.0 29.0 28.5 28.5 28.5 SODIUM AD- SORP- TION	PAR-ENCY (SECCHI DISK) (M) .80 POTAS-SIUM, DIS-SOLVED (MG/L	DIS- SOLVED (MG/L) 8.8 4.9 3.7 3.6 BICAR- BONATE FET-FLD (MG/L AS	DIS- SOLVED (PER- CENT SATUR- ATION) 117 63 47 46 ALKA- LINITY FIELD (MG/L AS	NESS (MG/L AS CACO3) 76 74 SULFATE DIS- SOLVED (MG/L
AUG 28	1900 1902 1904 1906 1908 HARD- NESS, NONCAR- BO NATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 35.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 218 218 218 221 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	(STAND-ARD UNITS) 8.2 7.3 7.1 7.1 7.1 SODIUM, DIS- SOLVED (MG/L AS NA) 11	ATURE (DEG C) 31.0 29.0 28.5 28.5 28.5 SODIUM AD- SORP- TION RATIO .666	PAR-ENCY (SECCHI DISK) (M) -80	DIS- SOLVED (MG/L) 8.8 4.9 3.7 3.6 BICAR-BONATE FET-FLD (MG/L AS HCO3)	DIS- SOLVED (PER- CENT SATUR- ATION) 117 63 47 46 ALKA- LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 76 74 SULFATE DIS- SOLVED (MG/L AS SO4) 3.4

TABLE 8.--Chemical-quality survey of Lake Conroey January 16, 1976

302127095335501 SITE A_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN 16 16 16 16 16	0945 0948 0950 0952 0954 0956	1.00 10.0 20.0 30.0 40.0 50.0 58.0	224 224 224 224 224 224 224 234	7.8 7.8 7.7 7.6 7.6 7.5	10.5 10.5 10.0 10.0 10.0 9.5	-80 	10.8 10.6 10.6 10.3 9.8 9.5 6.2	96 95 94 91 87 84 54	83 89
DATE	HARD- NESSy NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUMy DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 16 16 16 16 16 16	8 9	30 32	1.9	10	.5	2.9	92 97	75 80	3.8 4.5
DATE	CHLO- RIDE; DIS- SOLVED (MG/L AS CL)	FLUO- RIDEy DIS- SOLVED (MG/L AS F)	SILICA; DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GENy NO2+NO3 TOTAL (MG/L AS N)	NITRO- GENY AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUSY TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE; DIS- SOLVED (UG/L AS MN)
JAN 16 16 16 16 16	18 19	.20	4.4 5.9	120 120	.140	.010	.030	<10 <10 30	<10 <10 240
				30213209	5333701 s	ITE A _l			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN; DIS- SOLVED (PER- CENT SATUR- ATION)	
	JAN 16 16 16 16	1005 1008 1010 1012 1014 1016	1.00 10.0 20.0 30.0 40.0 50.0	224 224 224 224 224 230	7.8 7.8 7.8 7.6 7.4	10.5 10.5 10.5 10.5 10.0 9.5	10.8 10.7 10.7 10.7 9.9 8.4	96 96 96 88 74	

TABLE 8.--Chemical-quality survey of Lake Conrole, January 16, 1976--continued

302245095365301 SITE B

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN 16 16 16	0915 0917 0919 0921	1.00 10.0 20.0 27.0	229 229 229 237	7.8 7.8 7.7 7.1	11.0 10.5 10.5 9.5	.80	11.0 11.0 10.7 7.0	99 98 96 61	88 91
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CAC03)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 16 16 16	8 9	32 33	2.0	10 11	.5 -5	3.0	97 100	80 82	4.1 4.3
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
JAN 16 16 16	18 18	.30	4.4 4.9	120 130	.140 .140 .130	.010	.030 .030 .050	<10 <10 <10	<10 <10 <10
				30232309	5341201 SI	TE C _C			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND-ARD UNITS)	TE C _C TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	DATE JAN 16 16 16 16	TIME 1030 1032 1034 1036 1038 1040	PLING DEPTH	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD	TEMPER-	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	
	JAN 16 16 16 16	1030 1032 1034 1036 1038	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 40.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 224 224 224 224 224 224	PH (STAND-ARD UNITS) 7.8 7.8 7.8 7.8 7.6	TEMPER- ATURE (DEG C) 10.5 10.5 10.5 10.0 10.0	DIS- SOLVED (MG/L) 10.9 10.8 10.7 10.6 9.9	DIS- SOLVED (PER- CENT SATUR- ATION) 97 96 96 95 88	
	JAN 16 16 16 16	1030 1032 1034 1036 1038	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 40.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 224 224 224 224 224 224	PH (STAND-ARD UNITS) 7.8 7.8 7.8 7.8 7.6 7.5	TEMPER- ATURE (DEG C) 10.5 10.5 10.5 10.0 10.0	DIS- SOLVED (MG/L) 10.9 10.8 10.7 10.6 9.9	DIS- SOLVED (PER- CENT SATUR- ATION) 97 96 96 95 88	
	JAN 16 16 16 16	1030 1032 1034 1036 1038 1040	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 40.0 56.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 224 224 224 224 224 224 224 30232009 SPE- CIFIC CON- DUCT- ANCE	PH (STAND-ARD UNITS) 7.8 7.8 7.8 7.8 7.6 7.5	TEMPER- ATURE (DEG C) 10.5 10.5 10.5 10.0 10.0	DIS- SOLVED (MG/L) 10.9 10.8 10.7 10.6 9.9 9.2	DIS- SOLVED (PER- CENT SATUR- ATION) 97 96 96 95 88 81 OXYGEN, DIS- SOLVED (PER- CENT SATUR-	

302448095374101 SITE D_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN 16 16 16	1100 1102 1104 1106	1.00 10.0 20.0 27.0	223 223 223 223	7.8 7.8 7.3 7.3	11.0 11.0 10.0 10.0	.90 	10.9 10.7 9.0 8.7	98 96 80 77	81 81
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 16	6	29	2.0	10	•.5 	3.0	92	75 	4.9
16 16	6	29	2.0	10	•5	2.9	92	75	4.1
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
JAN 16	19	.20	4.2	120	.080	.020	.030	50	<10
16 16	 19	.20	4.5	120	.130	.020	.030	20 <10	<10 <10
10	1)	•20	4.5				.030	(10	(10
				30260709	5360901 S	ITE Ec			
						Č			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
DATE JAN 16 16 16	1130 1132 1134 1136	PLING DEPTH	CIFIC CON- DUCT- ANCE	PH (STAND- ARD	TEMPER- ATURE	OXYGEN, DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	NESS (MG/L AS	NESS, NONCAR- BONATE (MG/L
JAN 16 16	1130 1132 1134	PLING DEPTH (FEET) 1.00 10.0 20.0	CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS) 7.7 7.7 7.7	TEMPER- ATURE (DEG C) 11.0 11.0	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	NESS (MG/L AS CACO3)	NESS, NONCAR- BONATE (MG/L CACO3)
JAN 16 16 16	1130 1132 1134 1136 CALCIUM DIS- SOLVED (MG/L	PLING DEPTH (FEET) 1.00 10.0 20.0 32.0 MAG NE- SIUM, DIS- SOLVED (MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 222 222 222 222 222 SODIUM, DIS- SOLVED (MG/L	PH (STAND-ARD UNITS) 7.7 7.7 7.6 SODIUM AD- SORP- TION	TEMPER-ATURE (DEG C) 11.0 11.0 11.0 11.0 POTAS-SIUM, DIS-SOLVED (MG/L	OXYGEN, DIS- SOLVED (MG/L) 10.5 10.5 10.2 BICAR- BONATE FET-FLD (MG/L AS	DIS- SOLVED (PER- CENT SATUR- ATION) 95 95 92 ALKA- LINITY FIELD (MG/L AS	NESS (MG/L AS CACO3) 81 81 SULFATE DIS- SOLVED (MG/L	NESS, NONCAR- BONATE (MG/L CACO3) 7 7 CHLO- RIDE, DIS- SOLVED (MG/L
JAN 16 16 16 16 DATE JAN 16	1130 1132 1134 1136 CALCIUM DIS- SOLVED (MG/L AS CA)	PLING DEPTH (FEET) 1.00 10.0 20.0 32.0 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	CIFIC CON- DUCT- ANCE (UMHOS) 222 222 222 222 222 SODIUM, DIS- SOLVED (MG/L AS NA)	PH (STAND-ARD UNITS) 7.7 7.7 7.7 7.6 SODIUM AD-SORP-TION RATIO	TEMPER-ATURE (DEG C) 11.0 11.0 11.0 11.0 POTAS-SIUM, DIS-SOLVED (MG/L AS K)	OXYGEN, DIS- SOLVED (MG/L) 10.5 10.5 10.2 BICAR- BONATE FET-FLD (MG/L AS HCO3)	DIS-SOLVED (PER-CENT SATUR-ATION) 95 95 92 ALKA-LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 81 81 SULFATE DIS- SOLVED (MG/L AS SO4)	NESS, NONCAR- BONATE (MG/L CACO3) 77 CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN 16 16 16 DATE JAN 16 16 16	1130 1132 1134 1136 CALCIUM DIS- SOLVED (MG/L AS CA) 29 29	PLING DEPTH (FEET) 1.00 10.0 20.0 32.0 MAGNE-SIUM, DIS-SOLVED (MG/L AS MG) 2.12.0 JUO-SIL DE, DI JIS-SOLVED (MG/L AS MG)	CIFIC CON- DUCT- ANCE (UMHOS) 222 222 222 222 222 222 210 SODIUM, D15- SOLVED (MG/L AS NA) 10 10 SOL ICA, SUM S CON LVED TUE G/L S SO	PH (STAND-ARD UNITS) 7.7 7.7 7.6 SODIUM AD-SORP-TION RATIO SOF NI STI-GNTS, NO2 CONTS, NO2 CONTS	TEMPER-ATURE (DEG C) 11.0 11.0 11.0 11.0 11.0 POTAS-SIUM, DIS-SOLVED (MG/L AS K) 3.03.0 TRO-NI EN, G+N03 AMM TAL TOG/L (MG/L MG/L TOG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L M	OXYGEN, DIS- SOLVED (MG/L) 10.5 10.5 10.5 10.2 BICAR- BONATE FET-FLD (MG/L AS HCO3) 90 90 TRO- EN, PH ONIA PHO G/L TOL	DIS-SOLVED (PER-CENT SATUR-ATION) 95 95 95 92 ALKA-LINITY FIELD (MG/L AS CACO3) 74 74 OS- IR RUS, DG G/L (U	NESS (MG/L AS CACO3) 8181 SULFATE DIS-SOLVED (MG/L AS SO4) 4.14.6	NESS, NONCAR- BONATE (MG/L CACO3) 77 CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN 16 16 16 DATE JAN 16 16 16 16 17. 16 17. 18 18 19	1130 1132 1134 1136 CALCIUM DIS- SOLVED (MG/L AS CA) 29 29	PLING DEPTH (FEET) 1.00 10.0 20.0 32.0 MAGNE-SIUM, DIS-SOLVED (MG/L AS MG) 2.12.0 JUO-SIL DE, DI JIS-SOLVED (MG/L AS MG)	CIFIC CON- DUCT- ANCE (UMHOS) 222 222 222 222 222 222 SODIUM, DIS- SOLVED (MG/L AS NA) 10 10 SOL ICA, SUM S- CON LVED TUE G/L S SO	PH (STAND-ARD UNITS) 7.7 7.7 7.6 SODIUM AD-SORP-TION RATIO .5	TEMPER-ATURE (DEG C) 11.0 11.0 11.0 11.0 11.0 POTAS-SIUM, DIS-SOLVED (MG/L AS K) 3.03.0 TRO-NI EN, G+N03 AMM TAL TOG/L (MG/L MG/L TOG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L M	OXYGEN, DIS- SOLVED (MG/L) 10.5 10.5 10.5 10.2 BICAR- BONATE FET-FLD (MG/L AS HCO3) 90 90 TRO- EN, PH ONIA PHO G/L TOL	DIS-SOLVED (PER-CENT SATUR-ATION) 95 95 95 92 ALKA-LINITY FIELD (MG/L AS CACO3) 74 74 OS- IR RUS, DG G/L (U	NESS (MG/L AS CACO3) 8181 SULFATE DIS-SOLVED (MG/L AS SO4) 4.14.6	NESS, NONCAR- BONATE (MG/L CACO3) 7 7 CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 19 19 ING A- ISE, IIS- LIVED G/L

TABLE 8.--Chemical-quality survey of Lake Conroe, January 16, 1976--continued

302714095372201 SITE F_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	ΦΧΥG EN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
JAN 16 16	1200 1202 1205	1.00 10.0 24.0	220 220 220	8.0 7.9 7.0	11.5 11.0 10.0	11.2 11.0 6.1	98 100 54	81 79	9 10
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN 16 16	29 28	2.0	10	.5 .5	3.0	88 84	72 69	4.4 5.9	19 21
ים	RII Di SOI (MX	DE, DI IS- SO LVED (M G/L A	ICA, SUM S- CON LVED TUE G/L D S SO	STI- G NTS, NO2- IS- TO' LVED (M	EN, GI +NO3 AMMO TAL TO3 G/L (MO	ONÍA PHO TAL TO G/L (M	RUS, D TAL SO IG/L (U	ON, NE IS- D LVED SO G/L (U	NG A- SE, IS- LVED G/L MN)
1 (N 6 6 6	.20	3.9 4.3		.040	.020 .010 .060	.030 .030 .040	<10 <10 <10	<10 <10 <10
				30312909	5360501 s	ITE G _c			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN 16 16 16	1240 1242 1244 1246	1.00 10.0 20.0 34.0	266 266 276 302	7.7 7.6 7.6 7.3	11.0 11.0 11.0 10.5	.60	10.8 10.8 10.6 9.1	97 97 95 81	84 92
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 16 16 16	18 27	30 33	2.3	16 19	.8 .9	3.6 4.0	82 79	67 65	7.9 11
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
JAN 16 16 16	32 38	.20	6.5 8.5	140 160	.040 .020 .110	.030 .030 .110	.060 .060 .060	<10 70 50	<10 <10 100

TABLE 9.--Chemical-quality survey of Lake Conroey April 28y 19/6

302127095335501 SITE A_c

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN; DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
APR 28 28 28 28 28 28	1715 1717 1720 1722 1724 1726 1728	1.00 10.0 20.0 30.0 40.0 50.0 58.0	239 239 239 243 243 264 271	8.1 7.6 7.5 7.3 7.1 7.1	21.5 21.0 20.5 19.5 18.5 17.5	1.50	8.8 6.4 6.0 4.6 2.5 .2	99 71 66 49 27 2	84 93
DATE	HARD- NESSY NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUMY DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM; DIS- SOLVED (MG/L AS K)	BICAR-BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 28 28 28 28 28 28	5 0	30 33	2.3	11 11	.5 .5	3.0	97 120	80 98	6.0
DATE	CHLO- RIDEy DIS- SOLVED (MG/L AS CL)	FLUO- RIDE; DIS- SOLVED (MG/L AS F)	SILICAY DIS- SOLVED (MG/L AS SIO2)	SOLIDSY SUM OF CONSTI- TUENTSY DIS- SOLVED (MG/L)	NITRO- GENy NO2+NO3 TOTAL (MG/L AS N)	NITRO- GENY AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON; DIS- SOLVED (UG/L AS FE)	MANGA- NESE; DIS- SOLVED (UG/L AS MN)
APR 28 28 28 28 28 28 28	20	.30	3.9 6.9	120 150	.040 .090 .240 <.100	.020 .040 .010 .350	.010	<10 <10 <10 210	30 40 190 3500
				30213209	5333/01 S	ITE A ₁			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	APR 28 28 28 28 28 28 28	1740 1742 1744 1746 1748 1750	1.00 10.0 20.0 30.0 40.0 50.0	239 239 239 243 243 264 271	8.1 7.1 1.5 7.3 1.2 7.2 7.2	21.5 21.0 20.0 19.5 18.5 19.0	8.6 7.3 5.9 4.6 2.5 .3	97 81 64 49 27 3	

302245095365301 SITE Bc

DATE APR	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYG EN,	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
29 29 29	1055 1057 1059 1101	1.00 10.0 20.0 29.0	242 244 244 246	8.3 8.2 7.3 7.2	22.5 22.0 20.5 20.0	1.00	7.9 7.8 3.6 2.1	90 89 40 23	90 90
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BONATE FET-FLD	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 29 29 29	8 8	32 32	2.4 2.5	11 12	.5 .6	3.1	100	82 82	5.3 5.4
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR 29 29 29 29	20 ====================================	.30	3.6 4.6	130 130	<.100 .060 .060	.040	.010 .010 .010	<10 20 60	<10 <10 80
				30232309	5341201 S	ITE C _C			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	APR 28 28 28 28 28	1810 1812 1814 1816 1818 1820	1.00 10.0 20.0 30.0 40.0 48.0	239 239 239 239 243 243	8.5 8.5 8.4 7.4 7.2 7.2	22.0 22.0 22.0 20.0 19.5	9.6 9.5 9.0 4.7 2.6 1.4	109 108 102 51 28 15	
				30232009	5334001 S	ITE C			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	APR 28 28 28 28	1755 1757 1759 1801 1803	1.00 10.0 20.0 30.0 43.0	239 239 239 239 243	8.6 8.5 8.5 7.3 7.2	22.0 22.0 22.0 19.5 19.5	9.8 9.8 9.6 4.0 3.8	111 111 109 43 41	

TABLE 9.--Chemical-quality survey of Lake Conroe, April 28, 1976--continued

302714095372201 SITE F_C,

DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
APR 28 28 28 28	1918 1920 1922 1924	1.00 10.0 20.0 25.0	244 244 244 255	8.6 8.5 8.3 7.3	23.0 22.5 22.5 22.5	1.10	9.0 9.0 7.8 .6	103 102 89 7	87 88
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 28 28	8	31	2.4	12	.6	3.1	96 	79 	5.4
28 28		31	2.5	12	.6	3.1	100	82	5.0
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR 28	22	.30	3.5	130	<.100	.030	.020	<10	30
28 28 28	22	.30	4.8	130	<.100 <.100	.030 .070	.010 .030	<10 <10	120 1000
				30312909	5360501 S	ITE G			
				30312909	5360501 S	ITE G _C		OXYG FN	
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND-ARD UNITS)	5360501 S TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
DATE APR 29 29 29	TIME 0948 0950 0952 0954	PLING DEPTH	CIFIC CON- DUCT- ANCE	PH (STAND- ARD	TEMPER- ATURE	TRANS- PAR- ENCY (SECCHI DISK)	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	NESS (MG/L AS
APR 29 29 29	0948 0950 0952	PLING DEPTH (FEET) 1.00 10.0 20.0	CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS) 7.7 7.6 7.5	TEMPER- ATURE (DEG C) 23.0 23.0 23.0	TRANS- PAR- ENCY (SECCHI DISK) (M)	DIS- SOLVED (MG/L) 6.2 5.6 4.5	DIS- SOLVED (PER- CENT SATUR- ATION)	NESS (MG/L AS CACO3)
APR 29 29 29 DATE APR 29	0948 0950 0952 0954 HARD- NESS, NONCAR- BO NATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 20.0 34.0 CALCIUM DIS- SOLVED (MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 329 332 335 356 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	PH (STAND-ARD UNITS) 7.7 7.6 7.5 7.3 SODIUM, DIS-SOLVED (MG/L	TEMPER-ATURE (DEG C) 23.0 23.0 22.5 SODIUM AD-SORP-TION RATIO	TRANS-PAR-ENCY (SECCHI DISK) (M) .70 POTAS-SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L) 6.2 5.6 4.5 3.1 BICAR-BONATE FET-FLD (MG/L AS HCO3)	DIS-SOLVED (PER-CENT SATUR-ATION) 71 64 52 35 ALKA-LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 100 1110 SULFATE DIS- SOLVED (MG/L AS SO4)
APR 29 29 29 29 APR	0948 0950 0952 0954 HARD- NESS, NONCAR- BO NATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 20.0 34.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 329 332 335 356 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	PH (STAND-ARD UNITS) 7.7 7.6 7.5 7.3 SODIUM, DIS-SOLVED (MG/L AS NA)	TEMPER-ATURE (DEG C) 23.0 23.0 23.0 22.5 SODIUM AD-SORP-TION RATIO	TRANS-PAR-ENCY (SECCHI DISK) (M) .70	DIS- SOLVED (MG/L) 6.2 5.6 4.5 3.1 BICAR- BONATE FET-FLO (MG/L AS HCO3)	DIS-SOLVED (PER-CENT SATUR-ATION) 71 64 52 35 ALKA-LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3) 100 110 SULFATE DIS- SOLVED (MG/L AS SO4)
APR 29 29 29 DATE APR 29 29	0948 0950 0952 0954 HARD- NESS, NONCAR- BO NATE (MG/L CACO3)	PLING DEPTH (FEET) 1.00 10.0 20.0 34.0 CALCIUM DIS- SOLVED (MG/L AS CA)	CIFIC CON- DUCT- ANCE (UMHOS) 329 332 335 356 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	PH (STAND-ARD UNITS) 7.7 7.6 7.5 7.3 SODIUM, DIS-SOLVED (MG/L AS NA)	TEMPERATURE (DEG C) 23.0 23.0 23.0 22.5 SODIUM AD- SORP- TION RATIO	TRANS-PAR-ENCY (SECCHI DISK) (M) .70	DIS- SOLVED (MG/L) 6.2 5.6 4.5 3.1 BICAR- BONATE FET-FLD (MG/L AS HCO3)	DIS-SOLVED (PER-CENT SATUR-ATION) 71 64 52 35 ALKA-LINITY FIELD (MG/L AS CACO3)	NESS (MG/L AS CACO3)
APR 29 29 29 29 29 29 29 29 29	0948 0950 0952 0954 HARD- NESS, NONCAR- BO NATE (MG/L CACO3) 23 29 CHLO- RIDE, DIS- SOLVED (MG/L	PLING DEPTH (FEET) 1.00 10.0 20.0 34.0 CALCIUM DIS- SOLVED (MG/L AS CA) 37 39 FLUO- RIDE, DIS- SOLVED (MG/L	CIFIC CON- DUCT- ANCE (UMHOS) 329 332 335 356 MAG NE- SIUM, DIS- SOLVED (MG/L AS MG) 3.0 3.3 SILICA, DIS- SOLVED (MG/L AS	PH (STAND-ARD UNITS) 7.7 7.6 7.5 7.3 SODIUM, DIS-SOLVED (MG/L AS NA) 21 24 SOLIDS, SUM OF CONSTI-TUENTS, DIS-SOLVED	TEMPERATURE (DEG C) 23.0 23.0 23.0 22.5 SODIUM ADSORPTION RATIO NITROGEN, NO2+NO3 TOTAL (MG/L	TRANS-PAR-ENCY (SECCHI DISK) (M) .70 POTAS-SIUM, DIS-SOLVED (MG/L AS K) 3.8 4.0 NITRO-GEN, AMMONIA TOTAL (MG/L	DIS-SOLVED (MG/L) 6.2 5.6 4.5 3.1 BICAR-BONATE FET-FLD (MG/L AS HCO3) 100 100 PHOS-PHORUS, TOTAL (MG/L	DIS- SOLVED (PER- CENT SATUR- ATION) 71 64 52 35 ALKA- LINITY FIELD (MG/L AS CACO3) 8282 IRON, DIS- SOLVED (UG/L	NESS (MG/L AS CACO3) 100 110 SULFATE DIS- SOLVED (MG/L AS SO4) 9.3 10 MANG A- NESE, DIS- SOLVED (UG/L

302448095374101 SITE D_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
APR 28 28 28 28	1830 1832 1834 1836	1.00 10.0 20.0 27.0	242 242 242 252	8.6 8.5 8.3 7.3	23.0 22.5 22.5 21.5	1.10	9.2 8.8 8.0	106 100 91 4	88 90
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 28 28	8	31	2.5	12	.6	3.1	97	80	6.4
28	8	32	2.4	12	.6	3.1	100	82	 4.5
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN,	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
APR 28	22	.30	3.6	130	<.100	.040	.010	<10	20
28 28 28	21	.40	 5.4	130	<.100 .010	.040	.010 .050	<10 110	160 860
				30260709	5360901 SI	TE E			
							OXYG EN,		
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
APR 28 28 28 28	1850 1852 1854 1856 1858	1.00 10.0 20.0 30.0 37.0	241 241 241 241 249	8.6 8.6 8.4 7.4 7.2	22.5 22.5 22.0 20.5 20.5	9.2 9.2 8.5 3.4	105 105 97 37 8	85 88	7 6
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
APR 28 28	30	2.4	12 	.6 	3.1	95 	78 	5.9 	21
28 28	31	2.5	12	.6	3.1	100	82	6.3	21
28	FL RI D SO (M	2.5 UO- SIL DE, DI IS- SO LVED (M G/L A	SOL ICA, SUM S- COM LVED TUE G/L D SS SO	.6 .IDS, IOF NI ISTI- G ENTS, NO2 IS- TO LVED (M		RO- N, PH NIA PHO AL TO /L (M	OS- IR RUS, D TAL SO G/L (U	6.3 MA ON, NE IS- D LVED SO G/L (U	21 NGA- SE, IS- LVED G/L S MN)

TABLE 10.--Chemical-quality survey of Lake Conroey August 19, 1976

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

302127095335501 SITE A_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 19 19 19 19 19	1040 1042 1044 1046 1048 1050	1.00 10.0 20.0 30.0 40.0 54.0	242 242 242 255 268 345	8.1 8.0 7.5 7.1 7.1 6.9	30.0 29.5 28.5 26.0 22.5 21.5	1.30	6.5 6.3 3.7 .2 .2	8 / 8 3 4 8 2 2 2	82 120
DATE	HARD- NESSY NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR-BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 19 19 19 19	3 0	30 45	1.8	12	.6 .5	3.1	96 170	79 139	4.0
DATE	CHLO- RIDEW DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA; DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN y AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE; DIS- SOLVED (UG/L AS MN)
AUG 19 19 19 19	22	.20	5.5	130 200	.010 .010 .010	<.010 .010 .070 3.50	.030 .030 .060	80 /20 5300	<10 190 2000 /100
				30213209	5333701 S	ITE A ₁			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN; DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 19 19 19	1105 1108 1110 1112 1114	1.00 10.0 20.0 30.0 44.0	242 242 242 258 266	8.2 8.1 7.5 7.2 7.1	29.5 29.0 28.5 25.5 23.5	6.6 6.4 3.6 .2	87 84 47 2 2	

TABLE 10.--Chemical-quality survey of Lake Conroe, August 19, 1976--continued

302245095365301 SITE B_C

DATE AUG 19	TIME 1025	SAM- CO PLING DU DEPTH AN	CT- (ST	ARD AT	PER- (SI URE DI G C)	ECCHI I ISK) SC	D SO (GEN, (P DIS- C DLVED SA	GEN, IS- LVED ER- ENT TUR- TION)
19 19 19	1028 1030 1032	10.0 20.0 29.0	242 242 272	8.1 7.6	29.5 29.0 29.0		6.6 4.8	87 63 4
			30232309	5341201 S	ITE C _C			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
AUG 19 19 19 19	. 1122 . 1124 . 1126	10.0 20.0 30.0	242 242 242 259 273	8.2 8.1 7.9 7.1 7.0	30.0 29.5 28.5 25.5 24.5	6.4 6.3 5.6 .2	85 83 73 2 2	
			30232009	5334001 S	ITE C ₁			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
AUG 19 19 19 19	. 1138 . 1140 . 1142	10.0 20.0 30.0	242 242 242 259 268	8.1 8.1 8.0 7.2 7.0	29.5 29.0 28.5 25.0 23.5	6.2 6.1 5.7 .2	82 80 74 2 2	
		30244	809537410	1 SITE DC				
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
AUG 19 19 19	1157 1159	10.0	242 242 242 268	8.5 8.4 8.0 7.0	31.0 30.0 30.0 29.0	7.3 6.9 5.4 .2	99 92 72 3	

TABLE 10.--Chemical-quality survey of Lake Conroe, August 19, 1976--continued

302607095360901 SITE Ec

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 19 19 19 19	1210 1212 1214 1216 1218	1.00 10.0 20.0 30.0 44.0	241 241 241 265 318	8.4 8.2 7.5 7.1 6.8	31.0 29.5 29.0 25.5 23.5	1.30	7.0 6.2 2.5 .2	95 82 33 2 2	83 110
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 19 19 19 19	5 0	30 40	2.0	12 11	.6	3.1	95 150	78 123	4.8
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (M° L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
AUG 19 19 19 19	22	.20	5.6	130 170	<.100 <.100 <.100	<.010 .190 1.20	.060 .070 .640	90 1400 4800	190 2800 4200
				30271409	5372201 S	ITE Fc			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 19 19 19	1240 1242 1245	1.00 10.0 21.0	241 241 252	8.5 8.4 7.2	31.0 30.0 30.0	7.4 6.8 .2	100 91 3	

TABLE 10.--Chemical-quality survey of Lake Conroe, August 19, 1976--continued $303129095360501~\text{SITE G}_{\text{C}}$

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	P E (SE DI	ANS- AR- NCY CCHI SK) M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 19 19 19	1300 1302 1304 1306	1.00 10.0 20.0 27.0	248 248 272 293	7.7 7.5 6.9 6.7	30.5 29.5 29.0 28.5		.80	6.1 5.1 .2 .2	81 67 3 3	80 91
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	SO SO (M	TAS- IUM, IS- LVED G/L K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 19 19 19	5 1	29 33	1.8	14 19	.7		3.1	92 110	75 90	4.8 4.2
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	G AMM TO (M	TRO- EN, ONIA TAL G/L N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
AUG 19 19 19	25 35	.30	7.9 16	130 170	<.100 .010 <.100	<	.010 .210 .530	.050 .170 .390	180 880 3000	110 1500 2000

TABLE 11.--Chemical-quality survey of Lake Conroey February 16, 19//

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

30212/095335501 SITE A_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB 16 16 16 16 16	1015 1017 1020 1022 1024 1026 1028 1030	1.00 10.0 20.0 30.0 40.0 50.0 60.0 68.0	235 235 235 235 235 235 243 243	1.9 1.9 7.9 7.6 7.6 7.2	10.5 10.5 10.5 10.5 10.5 10.5 9.0	.70	11.7 11.6 11.6 11.6 10.6 7.6	108 108 107 107 107 98 68	82 87
DATE	HARD- NESS; NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUMy DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
FEB 16 16 16 16 16	7	29	2.3	12	.6	3.2	92 96	75 79	4.8 5.1
DATE	CHLO- RIDEW DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICAY DIS- SOLVED (MG/L AS SIO2)	SOLIDS; SUM OF CONSTI- TUENTS; DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN; AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON; DIS- SOLVED (UG/L AS FE)	MANGA- NESE; DIS- SOLVED (UG/L AS MN)
FEB 16 16 16 16 16	22	.10	2.6	120	.080	.010	.020	20 20 20	<10 <10 70

302132095333/01 SITE A 1

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
F EB	0940	1.00	235	7.9	10.5	.70	11.8	109
16 16	0940	10.0	235	7.9	10.5	.,0	11.6	107
16	0944	20.0	235	1.9	10.5		11.6	107
16	0946	30.0	235	7.9	10.5		11.6	107
16	0948	40.0	235	7.7	10.5		11.6	107
16	0950	51.0	235	1.6	10.5		11.6	107

TABLE 11.--Chemical-quality survey of Lake Conroe, February 16, 1977--continued

302245095365301 SITE B_{ε}

DATE FEB 16 16	TIME 0915 0917 0919	SAM- PLING DEPTH (FEET) 1.00 10.0 20.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND-ARD UNITS)	TEMPER-ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L) 11.5 11.4	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
16	0921	32.0	235	7.4	10.0	10.1	93
			30232309	5341201 S	ITE Cc		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB 16 16 16 16	1055 1058 1100 1102 1104	1.00 10.0 20.0 30.0 38.0	235 235 235 235 235	7.9 7.9 7.8 7.8 7.7	10.0 10.0 10.0 10.0	11.7 11.6 11.2 11.2 10.8	107 106 103 103 99
			30232009	5334001 S	ITE C _l		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB 16 16 16 16	1040 1042 1044 1046 1048	1.00 10.0 20.0 30.0 42.0	235 235 235 235 235 235	7.9 7.9 7.8 7.8 7.7	10.0 10.0 10.0 10.0	11.7 11.6 11.4 11.4	107 106 105 105 103
			30244809	5374101 S	ITE D _C		
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB 16 16 16	1115 1117 1120 1122	1.00 10.0 20.0 29.0	235 235 235 235	7.8 7.7 7.7 7.7	10.5 10.0 10.0 10.0	11.4 11.2 11.2 10.9	106 103 103 100

TABLE 11.--Chemical-quality survey of Lake Conroe, February 16, 1977--continued $302607095360901~{\rm SITE}~E_C$

DATE	TI	ME	SAM- PLII DEP: (FEI	CI - CO NG DU TH AN	E- FIC N- CT- CE (HOS)	PH (STA AR UNIT	ND- T D	EMPER ATURE DEG C	P. E - (SE DI	ANS- AR- NCY CCHI SK) M)	OXYGEI DIS- SOLVI (MG/I	SO N, (F - C ED SA	GEN, IS- LVED ER- ENT TUR-	HARD- NESS (MG/L AS CACO3)
FEB 16 16 16 16	11 11 11 11 11	32 34 36	1 1 0 2 0 3 0 4 2 .	.0	230 230 230 230 230		7.8 7.8 7.7 7.7 7.6	10. 10. 10. 10.		.90	11. 11. 11. 11.	.6 .2 .0	107 106 103 101 100	76 88
DATE	HARI NES NONC BONA (MG,	S, AR- TE /L	CALCI DIS- SOLV (MG/ AS (IUM S - D /ED SO /L (M	GNE- IUM, IS- LVED G/L MG)	SODI DIS SOLV (MG	UM, - ED /L	SODIUI AD- SOŘP- TION RATIO	SI DI SOI (MX	TAS- IUM, IS- LVED G/L K)	BICAL BONAT FET-FI (MG/I AS HCO3)	TE LIN LD FI L (M	KA- ITY ELD G/L S CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
FEB 16 16 16 16		6	26 30	 	2.6	12		. (- -	3.2	-	35 92	70 75	5.8
FE 1 1 1 1	ATE 6 6 6 6	RI DI SO (M	LVED G/L CL) 2	SILICA, DIS- SOLVED (MG/L AS SIO2)	SUM CONS TUEN DI SOI	STI-		03 Al L L	NITRO- GEN, 1MONIA FOTAL (MG/L AS N) .020		RUS, TAL 5/L	IRON, DIS- SOLVED (UG/L AS FE)	NE D SO (U AS	NG A- SE, IS- LVED G/L MN)

302714095372201 SITE F_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB							
16	1145	1.00	220	7.5	10.5	10.6	98
16	1147	10.0	220	7.5	10.5	10.4	96
16	1149	23.0	220	7.4	10.5	9.9	92

TABLE 11.--Chemical-quality survey of Lake Conroe, February 16, 1977--continued

303129095360501 SITE Gc

DATE	TI	ME	SAM- PLII DEP' (FEI	NG TH	SPE CIF CON DUC ANC (UMH	I C - T- E	PH (STA AR UNIT	ND – D	TEMP ATU (DEG	RE	P E (SE DI	RANS- PAR- ENCY ECCHI ESK)	OXYGI DI: SOLV (MG)	S- VED	OXYG DI SOL (PE CE SAT ATI	S- VED R- NT UR-	HARI NESS (MG/ AS CACC	S /L
FEB 16 16 16	12 12 12 12	12 14	1 10 20 33	.0		162 162 198 198		6.9 6.9 6.9 7.0	1 1	2.0 2.0 2.0 2.0		•50 		7.6 7.5 7.9 7.9		73 72 76 76		49 60
DATE	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALC: DIS- SOLV (MG,	- /ED /L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	- ED /L		ON	SO (M	TAS- GIUM, DIS- DLVED MG/L G K)	BICA BONA FET-1 (MG, AS HCO)	ATE FLD /L	ALK LINI FIE (MG AS CAC	TY LD / L	SULFA DIS- SOLV (MG/ AS SO	- /ED /L
FEB 16 16 16		12 17	17 21			.6	10			.7 .8		3.1		45 52		37 43	1 1	9.0 1
ם	ATE	RI DI SO (M	LO- DE, S- LVED G/L	SILI DIS SOL (MG AS SIO	S- VED /L	SUM CON TUE D SO	IDS, OF STI- NTS, IS- LVED G/L)	G NO 2 TO (M	TRO- EN, +NO3 TAL G/L N)	G I AMMO TO I	CAL G/L	PHO PHO TO (M)	OS- RUS, TAL G/L P)	D: SO: (U(ON, IS- LVED G/L FE)	NE D SO (U	NG A- SE, IS- LVED G/L MN)	
1	6 6 6	2			9.3 9.7		92 110		.020		.040		.100		130		<10 30	

TABLE 12.--Chemical-quality survey of Lake Conroey May 26, 19/7

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

30212/095335501 SITE A c

DATE	TIME	SAM- PLING DEPTH (FEET	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN; DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
MAY 26 26 26 26 26 26	1515 1517 1519 1521 1523 1525 1527	1.00 10.0 20.0 30.0 40.0 50.0 56.0	233 233 233 235 246 275 290	8.1 8.3 7.7 7.1 6.9 7.1 7.2	30.0 27.0 26.0 24.5 20.5 18.5	7.7 8.2 6.9 3.6 .2 .2	103 104 86 44 2 2	81	111 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 26 26 26 26 26	29	2.2	12	.6	3.0	130	107	4.8	24
D	R S (IDEÿ I DIS- S OLVED 0 MG/L	LLICAY SUNDIS- CONSOLVED TUE (MG/L I	ISTI- C CNTS; NO2 DIS- TO DLVED (M	GEN; G C+NO3 AMM DTAL TO IG/L (M	ONÍA PHO TAL TO G/L (M	DRUS, D DTAL SO 1G/L (U	ONy NE DIS- D LVED SO G/L (U	NGA- SE; IS- LVED G/L MN)
2 2 2 2 2	Y 6 6 6 6 6	.10	2.7	120 <	.010	.010 .010 .120 .810	.010 .020 .020 .220	40 30 20 2100	20 140 520 6500
				30213209	5333/01 S	ITE A 1			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	MAY 26 26 26 26 26	1453 1455 1457 1459 1501 1503	1.00 10.0 20.0 30.0 40.0 50.0 60.0	233 233 235 237 248 283 290	8.1 8.1 7.5 7.2 6.9 7.2 7.3	29.5 27.0 25.5 24.5 20.5 19.0	8.1 8.3 6.8 4.0 .2 .2	10 / 105 85 49 2 2	

TABLE 12.--Chemical-quality survey of Lake Conroe, May 26, 1977--continued

302245095365301 SITE |Bc

DATE MAY 26 26 26	TIME 1426 1428 1430 1432	SAM- PLING DEPTH (FEET) 1.00 10.0 20.0 28.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 233 233 238 239	PH (STAND-ARD UNITS) 8.3 7.6 7.1 6.8	TEMPER- ATURE (DEG C) 30.5 26.0 26.0	OXYGEN, DIS- SOLVED (MG/L) 8.2 6.8 4.3	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
			30232309	5341201 S	ITE Cc		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 26 26 26 26 26	1600 1602 1604 1606 1608 1610	1.00 10.0 20.0 30.0 40.0 50.0	233 233 234 239 254 281	8.4 8.0 7.6 6.9 6.8 7.1	30.0 26.5 25.5 24.0 20.5 19.5	8.7 7.8 6.7 3.3 .3	116 99 84 40 3 3
			30232009	5334001 S	ITE C1		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 26 26 26 26	1545 1547 1549 1551 1553	1.00 10.0 20.0 30.0 42.0	233 233 233 236 253	8.5 7.8 7.6 7.3 6.8	30.0 26.0 25.5 24.5 21.0	8.7 7.6 6.8 4.7	116 95 85 57 2
			30244809	5374101 S	ITE Dc		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 26 26 26	1630 1632 1634 1636	1.00 10.0 20.0 25.0	233 233 233 237	8.7 7.8 7.3 6.9	30.5 26.0 25.5 25.5	9.0 7.0 4.5	120 88 56 6

TABLE 12.--Chemical-quality survey of Lake Conroe, May 26, 1977--continued $302607095360901 \ \mbox{SITE E}_{\mbox{\scriptsize C}}$

DATE	TIME	SAM- PLING DEPTH (FEET	ANCE	PH - (STAN ARD	A7	IPER- TURE EG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAY 26 26 26 26	1650 1652 1654 1656 1658	1.0 10.0 20.0 30.0 36.0	23 23 24	13 8 16 7 11 6	.3 .1 .0 .8	30.0 26.5 25.5 22.5 22.0	1.50	9.0 4.3 3.9 .3	120 54 49 4 2	84 90
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIU DIS- SOLVE (MG/L AS CA	DIS- D SOLVE (MG/L	f, SODIU DIS- DSOLVE (MG/	M, SC D T L RA	DIUM AD- ORP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
MAY 26 26 26 26	13 0	30 - - 32		- 	 	.6 .6	3.0	86 110	71 90	4.6 4.8
D.	R D: S0 (1	IDE, IS- DLVED MG/L	DIS- C	OLIDS, SUM OF CONSTI- UENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	G AMM TO (M	ONÍA PHO TAL TO G/L (N	ORUS, D OTAL SO MG/L (U	ON, NE IS- D LVED SO G/L (U	NG A- SE, IS- LVED G/L
2 2 2	6 6 6	25 24	2.8 5.7	120 140	.010	-) -	.010 .010 	.020	40 20 1000	4 50 3600
				30271	4095372	201 S	ITE F _C			
	DATE	TI ME	SAM- PLING DEPTH (FEET	I ANCE	C - (ST	PH CAND- ARD .TS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	MAY 26 26 26	1712 1714 1716 1718	10.0 20.0	2 2	26 31 34 41	8.7 8.1 7.3 6.7	30.0 26.5 26.0 25.0	9.1 7.9 5.4	121 100 68 2	

TABLE 12.--Chemical-quality survey of Lake Conroe, May 26, 1977--continued $303129095360501 \ \ \text{SITE} \ \ G_{C}$

DATE	TI	ME	SAM PLI DEP (FE	NG Th	SPE- CIFICON- DUCT- ANCE (UMHO	PI - (STA Al	AND- RD	TEMP ATU (DEG	RE	PA EN	CHI K)	DXYGEN, DIS- SOLVED (MG/L)	OXYGI DI: SOLV (PEI CEI SATI	S- VED R- NT JR-	HARD- NESS (MG/L AS CACO3)
MAY 26 26 26 26	17: 17: 17: 17: 17:	38 40 42	1 10 20 30 34	.0	2 (2 (2 (19 05 05 17 27	9.1 7.0 6.8 6.8	2 2 2	2.0 6.5 5.0 5.0		.90	10.7 3.1 .2 .2		147 39 2 2 2	76 74
DATE	HARI NESS NONCA BONA (MGA CACO	S, AR- TE /L	CALC DIS- SOL' (MG AS	- VED /L	MAG NI SIUI DIS- SOLVI (MG/I	M, SODI - DIS ED SOLV L (MG	3- '		ON	SI	VED /L	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA LINIT FIET (MG, AS CACO	ry LD / L	SULFATE DIS- SOLVED (MG/L AS SO4)
MAY 26 26 26 26		12 8	27 26		2.	 	 		.6 .7			78 80		64	8.5 6.3
D	ATE	RI DI SO (M	LO- DE, S- LVED G/L CL)	SILI DIS SOL (MG AS	CA, S LVED S L/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	G NO 2 TO (M	TRO- EN, +NO3 TAL G/L	NITR GEN AMMON TOTA (MG/ AS N	I, IA L L	PHOS PHORU TOTA (MG/ AS E	IS, I AL SC 'L (l	RON, DIS- DLVED JG/L S FE)	NE SO (U	NG A- SE, IS- LVED G/L MN)
2) 2) 2)	Y 6 6 6	2	1 5		3.2	120 120	<	.010	.0	10 10 	•0	060 090 520	40 80 1600		20 100 1300

TABLE 13.--Chemical-quality survey of Lake Conroe, September 16, 19//

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --paramneter not determined; <-less than)

30212/095335501 SITE Ac

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
SEP 16 16 16 16	1105 1107 1110 1112 1114 1116	1.00 10.0 20.0 30.0 40.0 52.0	242 242 244 252 273 312	7.9 7.7 7.2 7.1 6.9 6.8	28.0 27.5 21.0 26.0 21.0 20.0	1.20	7.6 6.8 3.8 .2 .2	97 87 48 2 2 2	81 110
DATE	HARD- NESSy NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUMW DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM; DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
SEP 16 16 16 16	8 0	29 38	2.2	13	.7 -7	3.0	90 140	74 115	4.8 2.7
DATE	CHLO- RIDE; DIS- SOLVED (MG/L AS CL)	FLUO- RIDEN DIS- SOLVED (MG/L AS F)	SILICAN DIS- SOLVED (MG/L AS SIO2)	SOLIDSY SUM OF CONSTI- TUENTSY DIS- SOLVED (MG/L)	NITRO- GEN; NO2+NO3 TOTAL (MG/L AS N)	NITRO- GENY AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS; TOTAL (MG/L AS P)	IRON; DIS- SOLVED (UG/L AS FE)	MANGA- NESE; DIS- SOLVED (UG/L AS MN)
SEP 16 16 16 16	24 24	.10	3.8	120 1/0	.020 .030 .030	.010 .020 .140 2.60	.020 .020 .050 	70 50 390 4100	100 1300 4/00
				30213209	5333/01 S	ITE A 1			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	SEP 16 16 16 16	1120 1122 1124 1126 1128	1.00 10.0 20.0 30.0 43.0	242 242 244 249 278	7.9 7.6 7.5 7.1 6.9	28.0 27.5 27.0 26.5 21.5	7.6 6.3 5.8 .2	97 81 73 3 2	
				30224509	5365301 S	ITE B _C			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	SEP 16 16 16	1030 1032 1034 1036	1.00 10.0 20.0 25.0	242 242 242 245	8.1 8.0 7.8 7.4	28.0 28.0 28.0 28.0	7.8 6.9 4.4	101 100 88 56	

302323095341201 SITE Cc

	DATE SEP	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	16 16 16 16 16	1130 1132 1134 1136 1138 1140	1.00 10.0 20.0 30.0 40.0 47.0	242 242 242 244 290 304	7.9 7.8 7.6 7.2 6.9	28.0 27.5 27.5 26.5 21.5 21.0	7.5 7.1 6.6 2.5 .2	96 91 85 32 2 2	
				30232009	5334001 S	ITE C _l			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	SEP 16 16 16	1142 1144 1146 1148 1150	1.00 10.0 20.0 30.0 35.0	242 242 242 243 296	8.1 7.9 7.8 7.7 7.2	28.5 28.0 28.0 27.5 24.5	7.9 7.5 7.2 6.4	103 96 92 82 2	
				30244809	5374101 S	ITE D _C			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	SEP 16 16 16	1200 1202 1204 1206	1.00 10.0 20.0 26.0	240 240 240 240	8.0 7.9 7.3 7.2	28.0 28.0 28.0 28.0	8.0 7.4 4.5 3.6	103 95 58 46	
				30260709	5360901 s	ITE Eç			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER-ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
16 16 16 16	1215 1217 1220 1222 1224	1.00 10.0 20.0 30.0 42.0	240 240 240 243 359	8.2 8.1 7.5 7.3 6.7	28.5 28.0 28.0 27.5 22.5	1.20	8.6 7.9 5.9 4.0	112 101 76 51 2	81 120
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
SEP 16 16 16	8	29 44	2.2	14	.7	3.1	90 180	74 148	4.7 2.4

TABLE 13.--Chemical-quality survey of Lake Conroe, September 16, 1977--continued

302607095360901 SITE E_{c} --continued

			3026	070953609	901 SITE	E _C c	ontinued			
D	ATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	G 3 AMM TO (M	ONÍA PH TAL T G/L (HOS- ORUS, OTAL MG/L S P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
SE 1	Р 6	25	3.8	130	.02	0	.010	.010	140	50
1	6				-	- -				
	6 6	24	14	210	.06 .02		.090 .80	.030 .740	310 10000	430 7400
				3027	1409537	2201 S	ITE F _C			
	DATE SEP	TI	SAM PLI ME DEP (FE	NG DUC	FIC N- CT- (S CE	PH TAND- ARD ITS)	TEMPER- ATURE (DEG C)	SOLVE	CEN CD SATU	ED - T R-
	16 16	. 12	32 10	.00 .0 .0	239 239 240	8.1 8.0 7.7	29.0 28.5 28.0	7.	.8 1	09 01 87
				3031	2909536	0501 S	ITE Gc			
DATE	T I ME	SAM PLI E DEP (FE	NG DUC TH ANC	IC - PH T- (STA E AF	AND- TE RD A	MPER- TURE EG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN DIS- SOLVE (MG/L	CEN CD SATU	ED HARD- - NESS T (MG/L R- AS
SEP 16 16 16	1300 1302 1304 1306	10	.0 .0	246 255 255 255 255	8.1 7.5 7.2 7.2	28.5 27.5 27.5 27.5	.80	8. 6. 4. 3.	.3 1	14 82 81 53 49 82
DATE	HARD- NESS, NONCAF BONATE (MG/I CACO3	CALC R- DIS- SOLV (MG)	- DI VED SOL /L (MG	UM, SODI S- DIS VED SOLV /L (MG	.UM, S- S VED	ODIUM AD- ORP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR BONAT FET-FL (MG/L AS HCO3)	TE LINIT D FIEL (MG/ AS	Y SULFATE D DIS- L SOLVED (MG/L
SEP 16 16 16	-	9 29 9 29		.3 15		.8	2.8	-	· -	73 4.3 73 4.1
D.	ATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	G1 3 AMMO TO' (MX	ONÍA PH FAL T G/L (HOS- ORUS, OTAL MG/L S P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
	6	26	5.0	130	.02		.010	.040	30	<10
1	6 6	28	5.7	130	.03	-	.010 .040	.050	30 50	30 140
,	6	20	5.7	130	.03	U	• 040	.000	50	170

TABLE 14.--Chemical-quality survey of Lake Conroe, March 14,1978

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; (-less than)

302127095335501 SITE A c

DATE	TI	ME	DE	ING	CI CO DU AN	FIC N- CT- CE (HOS)	(ST	PH CAND- ARD CTS)	ΑT	PER- URE G C)) (S) D	RAN PAR ENC ECC ISK (M)	- Ч (Н (OXYGI DI: SOL' (MG	S- VED	D SO (P C SA	GEN; IS- LVED ER- ENT TUR- ION)	NE (M A	RD- SS G/L S CO3)	HAR NES NONC BONA (MG CAC	Sy AR- TE /L
MAR 14 14 14 14 14 14	09 09 09	945 947 949 951 953	1 (2 (3 (4 (1.00 0.0 0.0 0.0 0.0		238 238 238 238 238 238		7.8 7.8 7.7 7.1 7.7 7.5		11.5 11.5 11.0 10.5 10.5		1.	80		9.6 9.6 9.3 9.1 8.9 8.5		91 91 87 84 82 79		93 91		22
DATE	(MG		SI DI SOI (MC	GNE- IUM; IS- LVED G/L MG)	DI SOL (M	S- VED G/L NA)	SC	DIUM AD- ORP- TION ATIO	S D SO (M	TAS- IUM, IS- LVED G/L K)	B () FE:	ICA ONA T-F MG/ AS CO3	TE I LD L	ALKA LINIO FIE (MG AS CACO	ry LD /L	BO FET (M	AR- NATE -FLD G/L CO3)	DI SC (M	FATE S- LVED G/L SO4)	CHL RID DIS SOL (MG AS	Ey - VED /L
MAR 14 14 14 14 14	33	==		2.5	1			.6		3.0			86 90		71 74		0		6.4	28 29	
D A ′	TE	FLUORIDE RIDE DIS SOLV (MG/I	V ED L	SILIC DIS- SOLV (MG, AS SIO2	/ED /L	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS; S- VED	NITI GEI NO2+I TOTA (MG,	Ny NO3 AL /L	G! AMM TO' (M	TRO- EN; ON IA TAL G/L N)	P	PHOS- HORUS TOTAI (MG/I AS P)	3 y	ARSEI DI: SOLV (UG: AS A	S- /ED /L	BARI DIS SOLV (UG AS	ED /L	CADM DI SOL (UG AS	S- VED /L	
14 14 14 14	•••		10		3.3		130	•	130		.010		.09	00		2 1		400		ND	
DA'		CHROMIUM DIS- SOLV (UG/ AS C	y ED L	COPPI DIS- SOLV (UG,	ED L	IRO DI SOL (UG AS	S- VED /L	LEAI DI: SOL' (UG: AS	S- VED /L	NE D SO: (U	NGA- SE; IS- LVED G/L MN)		ERCUI DIS- SOLVI (UG/I AS HO	- ED L	SELI NIUI DIS SOLI (UG AS	My S- VED /L	SOI (UG	S- VED	ZIN DI SOL (UG AS	S- VED /L	
14 14 14 14 14	• • • • • • • • • • • • • • • • • • • •	•	ND		<2 2		<10		ND ND		<10 <10 40			 		<1 <1		ND <2		<20 20	
								30213	320 9	5333	701 \$	SIT	Е А								
		DAT	E	TIN	1E	SAM PLI DEP (FE	NG TH	SPE- CIFI CON- DUCT ANCI (UMHO	1C - - E		AND- RD	- 1	EMPEF ATURE DEG (}- E	DXYGI DIS SOLV (MG)	S- /ED	SOL (PE CE	S- VED R- NT UR-			
		MAR 14. 14. 14. 14. 14.	••	102 102 102 102 102 103	22 24 26 28	1 10 20 30 40 52	.0 .0 .0	2	238 238 238 238 238 238 238		8.0 8.0 7.8 7.7 7.7		12. 11. 11. 10.	. 5 . 5 . 0 . 5	6	9.5 9.5 9.5 9.1 8.8 8.4		91 90 90 85 81 78			

TABLE 14.--Chemical-quality survey of Lake Conroe, March 14, 1978--continued

302245095365301 SITE Bc

DATE MAR 14	TIME 0920 0922	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER-ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
14	0924 0926	20.0 30.0	238 238	7.7 7.5	11.0 10.5	8.3 7.2	78 67
			30232309	5341201 S	ITE C c		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 14 14 14 14 14	1100 1102 1104 1106 1108 1110	1.00 10.0 20.0 30.0 40.0 49.0	238 238 238 238 238 238	8.2 8.0 7.8 7.7 7.6 7.6	13.5 12.5 12.0 11.5 11.0	9.7 9.6 9.2 9.0 8.6 7.9	96 93 88 85 80 74
			30232009	5334001 S	ITE C 1		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 14 14 14 14	1045 1047 1049 1051 1053 1055	1.00 10.0 20.0 30.0 40.0 48.0	238 238 238 238 238 238	8.1 8.0 7.8 7.6 7.6 7.5	12.5 12.0 11.5 11.0 10.5	9.7 9.5 9.3 8.8 8.4 7.9	94 91 88 82 78 73
			30244809	5374101 S	ITE D _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 14 14 14	1130 1132 1135 1137	1.00 10.0 20.0 28.0	238 238 238 238	8.0 8.0 7.7 7.6	13.5 12.5 12.0 12.0	9.6 9.6 8.9 8.3	95 93 86 80

TABLE 14.--Chemical-quality survey of Lake Conroe, March 14, 1978--continued

302607095360901 SITE Ec

DATE MAR 14 14 14 14	TIME 1145 1147 1149 1151 1153	SAM- PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 39.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 236 236 236 236 238	PH (STAND-ARD UNITS) 8.4 7.9 7.6 7.4	TEMPER- ATURE (DEG C) 14.0 12.5 12.5 11.5	TRAI PAI ENC (SECC DISI (M)	R- CY OXYGEN CHI DIS- () SOLVE	CENT SATUR-ATION) 8 108 7 94 4 91 5 81	HARD- NESS (Mg/L AS CACO3)
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTA SIU DIS SOLV (MG AS H	JM, BONAT: S- FET-FLI VED (MG/L 'L AS	E LINITY	CAR- BONATE FET-FLD (MG/L AS CO3)
MAR 14 14 14	19 19	30 31	2.4	12	.6 .6		0 86		0 0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITE GET AMMON TOTA (MG/ AS N	N, PHOS- NIA PHORUS AL TOTAL 'L (MG/L	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 14 14 14 14	8.4 8.4	28 28	3.8 4.1	130	.060		980 .100 	 	<10 80
				30271409	5372201 S	ITE F _C			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPI ATUI (DEG	RE SOLVE	CENT SATUR-	
	MAR 14 14 14	1215 1217 1219 1221	1.00 10.0 20.0 27.0	226 226 226 226	8.1 7.8 7.3 7.3	13	5.0 10. 3.0 9. 2.0 7.1	7 95 9 76	

TABLE 14.--Chemical-quality survey of Lake Conroe, March 14, 1978--continued

303129095360501 SITE G_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAR 14 14 14	1245 1247 1249 1252	1.00 10.0 20.0 32.0	195 199 208 208	7.9 7.2 7.0 7.0	16.5 13.5 12.5 12.5	.60 	9.8 8.0 6.8 6.2	103 79 66 60	66 63
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
MAR 14 14 14	24 22	23 ====================================	2.0	12 13	.7	3.3	51	42 41	0 0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
MAR 14 14 14	13 15	28	9.1 11	120 120	.040	.040	.150	70 120	<10 40

TABLE 15.--Chemical-quality survey of Lake Conroe, July 13, 1978

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; (-less than)

302127095335501 SITE Ac

DATE JUL	TIM	P) E D) ()	AM- LING EPTH FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	PA	CHI K)	XYGENy DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS; NONCAR- BONATE (MG/L CACO3)
13 13 13 13 13 13	100; 100; 100; 101; 101; 101;	7 9 : 1 : 3 : 5 :	1.00 10.0 20.0 30.0 40.0 50.0	230 230 230 247 250 250 298	/.5 7.4 6.9 6.8 6.8 6.8	30.0 29.5 29.0 24.5 21.0 20.0		.80	5.8 5.4 2.3 .3 .6 .5	77 71 30 4 7 6 4	79 100	15 0
DATE	CALCIU DIS- SOLVE (MG/I AS CA	JM 5 ED 50 L (1	AGNE- SIUM; DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM _V DIS- SOLVED (MG/L AS K)	BIC BON FET- (MG AS HCO	ATE L FLD /L	ALKA- INITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE; DIS- SOLVED (MG/L AS CL)
JUL 13 13 13 13 13 13 13	•		2.7	14	.7 .6	2.7		78 130	64	0	7.1	28 26
D A '	F 9 (FLUO- RIDE# DIS- GOLVED (MG/L AS F)	SILI DIS SOL (MG AS SIO	CONS VED TUEN /L DI SOL	OF NIT TI- GI TS, NO2- S- TO	EN; GI FNO3 AMMO TAL TO3 G/L (MO	TRO- ENy ONIA TAL G/L N)	PHOS- PHORUS TOTAL (MG/L AS P)	y DIS SOLV	ED SOLV	DI ED SOL	S- VED /L
13 13 13 13 13	•••	.10			<	.030 <.	.010 .010 .010	.030	000		200 200	ND ND
DA'	M D S (TE A	CHRO- HIUMy DIS- SOLVED (UG/L AS CR)	COPP: DIS SOL' (UG AS	- DI VED SOL /L (UG	S- DI VED SOI /L (UC	AD		MERCUR' DIS- SOLVEI (UG/L AS HG	DIS D SOLV (UG/	y SILV - DI ED SOL L (UG	S- DI VED SOL /L (UG	S- VED /L
13 13 13 13 13	•••	ND			70 60 290 000		<10 90 1400 5300	<	• • •	<1 <1	ND ND	ND <20

TABLE 15.--Chemical-quality survey of Lake Conroe, July 13, 1978--continued

302132095333701 SITE A 1

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- C1F1C CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JUL 13 13 13 13 13	1100 1102 1104 1106 1108 1110 1112	1.00 10.0 20.0 30.0 40.0 50.0	230 230 230 250 250 280 300	8.1 7.8 7.0 6.8 6.8 6.8	31.0 30.5 29.5 25.0 21.5 19.0 18.5	7.3 6.6 3.1 .4 .4	99 88 49 5 5 4 4
			30224509	5365301 S	SITE B c		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JUL 13 13 13	0942 0944 0946 0948	1.00 10.0 20.0 32.0	223 223 229 250	8.4 8.3 6.6 6.5	31.5 31.0 29.0 25.0	7.8 7.8 .3	105 105 4 5
			30232309	5341201 S	ITE C c		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JUL 13 13 13 13 13 13	1134 1136 1138 1140 1142 1144 1146	1.00 10.0 20.0 30.0 40.0 50.0 60.0	230 230 230 248 262 275 275	8.1 7.9 7.3 6.7 6.8 6.8	32.0 31.0 30.0 24.5 21.5 20.5	7.2 6.7 5.0 .3 .3 .3	99 91 67 4 3 3
			30232009	5334001 S	ITE C 1		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JUL 13 13 13	1157 1159 1201 1203	1.00 10.0 20.0 34.0	230 230 230 252	8.1 8.0 7.2 6.7	32.0 31.0 30.0 24.5	7.0 6.8 4.5	96 92 60 5

TABLE 15.--Chemical-quality survey of Lake Conroe, July 13, 1978--continued

302448095374101 SITE D_C

	DATE JUL 13 13	TIME 1218 1220 1222	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS) 8.4 8.3 6.8	TEMPER- ATURE (DEG C) 32.5 31.0 31.0	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
			20.0		95360901 S				
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JUL 13 13 13 13	1240 1242 1244 1246 1248	1.00 10.0 20.0 30.0 42.0	229 229 229 229 282	8.2 8.2 7.8 6.8 6.6	32.0 31.0 30.5 25.0 21.5	1.70	7.4 7.2 6.4 .7	101 97 85 9 3	76 100
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
JUL 13 13 13 13	12 2	26 35	2.6	14 14	.7 .6	2.7	76 120	64 98	1 0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL 13 13 13 13	6.8	27 26	2.7 7.9	120 160	.010 <.100 .010	<.010 .020 .390	.020 .050 .360	60 920 3900	20 2800 3400
				30271409	5372201 S	ITE F _C			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	JUL 13 13	1306 1308 1310	1.00 10.0 24.0	227 227 242	8.3 8.3 6.5	32.5 31.5 30.0	7.4 7.4 .4	101 100 5	

TABLE 15.--Chemical-quality survey of Lake Conroe, July 13, 1978--continued $303129095360501 \ \ SITE \ G_C$

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JUL 13 13 13	1330 1332 1334 1336	1.00 10.0 20.0 33.0	235 241 306 348	8.4 7.7 6.4 6.3	33.0 31.5 29.5 27.5	1.50	7.5 5.7 .6	104 77 8 12	74 100
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
JUL 13 13 13	14 3	25 35	2.9	16 23	.8 1	2.6	69 120	60 98	2 0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL. (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
JUL 13 13 13	7.4 2.4	31 46	3.1 8.4	130 180	.010 <.100 <.100	.010 .310 1.50	.030 .290 .840	40 1100 2900	20 930 1700

TABLE 16.--Chemical-quality survey of Lake Conroe, September 29, 1978

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; (-less than)

302127095335501 SITE A_C

DATE	TII	ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAN ARD UNITS	. A	EMPER- ATURE DEG C)	TRA PA EN (SEC DIS (M	R- CY CHI K)	OXYGEN, DIS- SOLVEI (MG/L)	D SO: (P: C: D SA'	ER- ENT TUR-	HARD- NESS (MG/L AS CACO3)	HARD- NESS; NONCAR- BONATE (MG/L CACO3)
SEP 29 29 29 29 29 29 29	102 102 102 102 102 103 103	23 25 27 29 31 33	1.00 10.0 20.0 30.0 35.0 40.0 45.0 53.0	23 23 23 23 23 23 28 28 33	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	.7 .6 .6 .6 .6 .0 .9	26.5 26.5 26.5 26.5 26.5 22.0 22.0	1	-70 	6.8 6.5 6.4 6.4	5 5 + + 8 8	86 82 82 81 81 4 4	73	 0
DATE	CALCI DIS- SOLV (MG, AS (IUM - VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA)	SORP TIO RATI	- N S O (POTAS- SIUM; DIS- SOLVED (MG/L AS K)	BIC BON FET- (MG AS HCO	ATE FLD /L	ALKA- LINITY FIELD (MG/L AS CACO3)	BOI FET (M	NATE -FLD G/L	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
SEP 29 29 29 29 29 29 29	25		2.5	15 14		.8	2.8		80	66	•	0	7.0	28
DA	ATE	FLUO- RIDEY DIS- SOLVE (MG/L AS F)	DIS SOI CD (MC	ICA; SUN S- CON LVED TUN G/L N	ISTI- ENTS; N DIS- DLVED	NITRO- GENy O2+NO3 TOTAL (MG/L AS N)	GE	AL /L	PHOS PHORU TOTA (MG, AS I	JS _V I AL SO 'L (U	SENIC DIS- DLVED JG/L S AS)	BARIUM DIS- SOLVED (UG/L AS BA	DI SOL (UG	S- VED /L
29 29 29 29 29 29))))	-	 	2.9	120	<.100 <.100 <.100 <.100 <.100		010 020 509 30	.(020	1	30	- - - -	<2 ND
DA SEF	ATE	CHRO- MIUM, DIS- SOLVE (UG/L AS CR	COPI DIS D SOI	S- 1 LVED S	DIS- DLVED JG/L	LEAD, DIS- SOLVED (UG/L AS PB)	NES DI SOL (UG	S- VED	MERCU DIS SOLV (UG, AS E	JRY N1 S- I /ED SC	ELE- IUM, DIS- DLVED JG/L S SE)	SILVER DIS- SOLVE (UG/L AS AG	DI D SOL (UG	S- VED /L
29 29 29 29 29 29)	-	ID	6	<10 30 550 9500	NC	- - - - 6	20 100 200 6600		(.1 (.1	<1 <1	-	- - - -	<3 20

TABLE 16.--Chemical-quality survey of Lake Conroe, September 29, 1978--continued

302132095333701 SITE A1

DATE SEP	TIME	SAM- PLING DEPTH (FEET)	CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	(PER- CENT SATUR- ATION)
29 29 29 29 29	1105 1107 1109 1111 1113 1115	1.00 10.0 20.0 30.0 40.0 52.0	237 237 237 237 288 334	7.6 7.6 7.6 7.5 7.0 6.7	27.0 26.5 26.5 25.5 21.5 20.5	6.8 6.6 6.5 6.1 .2	86 84 82 76 2 2
			30224509	536 5 301 S	ITE B _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP 29 29 29 29	1000 1002 1005 1007	1.00 10.0 20.0 30.0	228 228 228 228	7.7 7.6 7.6 7.4	26.5 26.0 26.0 26.0	6.7 6.7 6.6 5.7	85 84 82 71
			30232309	5341201 S	ITE C _C		
							0 11110 1111
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
DATE SEP 29 29 29 29	TIME 1145 1147 1149 1151 1153	PLING DEPTH	CIFIC CON- DUCT- ANCE	(STAND- ARD	ATURE	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-
SEP 29 29 29 29	1145 1147 1149 1151 1153	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 35.0	CIFIC CON- DUCT- ANCE (UMHOS) 237 237 237 237 237 237 237	(STAND-ARD UNITS) 7.5 7.5 7.5 7.4 7.4	ATURE (DEG C) 26.5 26.5 26.0 26.0 24.0	DIS- SOLVED (MG/L) 6.6 6.6 6.3 6.2 5.8	DIS- SOLVED (PER- CENT SATUR- ATION) 84 79 78 72
SEP 29 29 29 29	1145 1147 1149 1151 1153	PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 35.0	CIFIC CON- DUCT- ANCE (UMHOS) 237 237 237 237 237 237 237	(STAND-ARD UNITS) 7.5 7.5 7.5 7.4 7.4 7.0	ATURE (DEG C) 26.5 26.5 26.0 26.0 24.0	DIS- SOLVED (MG/L) 6.6 6.6 6.3 6.2 5.8	DIS- SOLVED (PER- CENT SATUR- ATION) 84 79 78 72

TABLE 16.--Chemical-quality survey of Lake Conroe, September 29, 1978

302448095374101 SITE Dc

	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	SEP 29 29 29	1205 1207 1209 1211	1.00 10.0 20.0 25.0	237 237 237 237	7.6 7.5 7.4 7.3	27.0 26.5 26.5 26.5	6.8 6.2 6.1 5.4	86 78 77 68	
				30260709	5360901 SI	TE E _C			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
SEP 29 29 29 29 29	1220 1222 1224 1226 1228 1230	1.00 10.0 20.0 30.0 35.0 42.0	239 239 239 239 327 331	7.5 7.4 7.4 7.3 7.1	27.0 26.0 26.0 26.0 25.0 24.5	1.60	6.6 6.1 5.9 5.8 .4	84 76 74 72 5 4	79 120
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
SEP 29 29 29 29 29	13 19	27 42	2.8	15 15	.8 .6	3.0	80 120	66 98	0 0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
SEP 29 29 29 29 29	5.9 6.1	27 32	3.3 8.5	120 180	<.100 <.100 <.100	.010	.020 .020 	<10 20 1600	60 400 7200
				30271409	5372201 SI	TE F _C			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	SEP 29 29 29	1245 1247 1249	1.00 10.0 20.0	239 239 239	7.3 7.1 7.1	27.5 26.5 26.5	5.6 4.6 4.2	72 58 53	

TABLE 16.--Chemical-quality survey of Lake Conroe, September 29, 1978--continued $303129095360501 \ \mbox{SITE} \ \mbox{G}_{\mbox{\scriptsize C}}$

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
SEP 29 29 29 29	1320 1322 1324 1326	1.00 10.0 20.0 30.0	252 252 252 252 252	7.6 7.4 7.3 7.3	26.0 25.0 25.0 25.0	1.20	7.0 6.0 6.0 5.4	88 74 74 67	76 74
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE - SIUM, DIS - SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
SEP 29 29 29 29	12 10	26 25	2.7 2.7	18 18	.9 1	2.9	78 78	64 64	0 0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
SEP 29 29 29	5.1 6.2	32 32	4.6 3.5	130 130	<.100 .010 	.010 .030 	.030 .040 	20 <10 <10	<10 20 60

TABLE 17.--Chemical-quality survey of Lake Conroe, February 14, 1979

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

30212/095335501 SITE A_C

DATE	TIM	IE D	AM- LING EPTH FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND ARD UNITS)	- TEMPER ATURE (DEG C	PA EN - (SEC DIS	CCHI SK)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN; DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS; NONCAR- BONATE (MG/L CACO3)
FEB 14 14 14 14 14 14	150 150 150 150 150 151	2 4 6 8 0	1.00 10.0 20.0 30.0 40.0 50.0 58.0	232 232 232 232 232 232 232	8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8	6 9.0 6 9.0 3 8.0 2 8.0 2 7.1))) 5	.90	11.9 11.9 11.3 11.1 10.9	107 106 106 98 97 94	77 77	111 11
DATE	CALCI DIS- SOLV (MG/ AS C	UM ED S L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM: DIS- SOLVEI (MG/L AS K)	BON FET-	FLD /L	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
FEB 14	27		2.4	14	•	2.8		80	66	0	8.8	29
14							-					
14												
14 14								==				
14												
14	27		2.4	14	•	2.8		81	66	0	9.4	30
DA		FLUO- RIDE; DIS- SOLVED (MG/L AS F)	SILI DIS SOL (MG AS SIO	CAy SUM - CON VED TUE /L D SO	STI- (NTS: NO: IS- T(LVEL ()	GEN _Y (2+NO3 AM DTAL TO MG/L ()	TRO- GEN: MONIA DTAL MG/L G N)	PHOS PHORU TOTA (MG/ AS P	S; DI L SOL L (UG	S- DI VED SOL	S- D VED SO: G/L (U	MIUM IS- LVED G/L CD)
F EB												
	• • •	.10		.8	120	.030	.020	.0			<100	ND
	• • •											
14	• • •					.020	.020	.0	30			
	• • • •								 			
	• • • •			1.2	130	.040	.030	.0.			<100	ND
DA	1	CHRO- MIUM; DIS- SOLVED (UG/L AS CR)	COPP DIS SOL (UG AS	- D VED SO /L (U	IS- I LVED SO G/L (U	EADY NE DIS- I DLVED SO JG/L (U	ANGA- CSE; DIS- DLVED IG/L S MN)	MERCU DIS SOLV (UG/ AS H	- DI ED SOL L (UG	My SIL S- D VED SO /L (U	IS- D LVED SO G/L (U	NCy IS- LVED G/L ZN)
F EB												
		<20		<2	<10	ND	<10	<	.1	<1	ND	ND
	• • •											
	• • •				<10		<10					
	• • •											
	• • •											
14	• • •	<20		<2	40	ND	30	<	. 1	<1	ND	<20

TABLE 17.--Chemical-quality survey of Lake Conroe, February 14, 1979--continued

302132095333701 SITE A1

DATE FEB 14 14 14 14	TI ME 1530 1532 1534 1536 1538	SAM- PLING DEPTH (FEET) 1.00 10.0 20.0 30.0 40.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND-ARD UNITS) 8.6 8.6 8.4 8.3	TEMPER- ATURE (DEG C) 9.5 9.5 9.0 8.5	OXYGEN, DIS- SOLVED (MG/L) 11.9 11.9 11.9	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
14	1540	50.0	232 30224509	8.1 5365301 S	7.5	10.7	92
			30227303		(OXYGEN,
DATE	TI ME	SAM- PLI NG DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)
FEB 14 14 14	1437 1440 1442 1444	1.00 10.0 20.0 29.0	232 232 232 232	8.5 8.4 8.4 8.3	9.5 9.0 9.0 8.5	11.6 11.5 11.3 11.0	105 103 101 97
			30232309	5341201 S	ITE C _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB 14 14 14 14 14	1557 1600 1602 1604 1606 1608	1.00 10.0 20.0 30.0 40.0 48.0	232 232 232 232 232 232 232	8.6 8.6 8.6 8.4 8.3	9.0 9.0 9.0 9.0 8.5 8.0	11.9 11.9 11.9 11.9 11.6 11.3	106 106 106 106 103 98
			30232009	5334001 S	ITE C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
FEB 14 14 14	1612 1614 1616 1618	1.00 10.0 20.0 34.0	232 232 232 232	8.4 8.4 8.4 8.4	9.0 9.0 8.5 8.5	11.5 11.5 11.5 11.5	103 103 102 102

TABLE 17.--Chemical-quality survey of Lake Conroe, February 14, 1979--continued 302448095374101 SITE $D_{\rm C}$

	DATE FEB 14 14 14	TIME 1631 1633 1635 1638	SAM- PLING DEPTH (FEET) 1.00 10.0 20.0 27.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 232 232 232 232	PH (STAND-ARD UNITS) 8.6 8.5 8.1 8.2	TEMPER- ATURE (DEG C) 11.5 11.0 8.5 8.5	0XYGEN, DIS- SOLVED (MG/L) 11.5 11.5 10.8 11.0	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
				30260709	5360901 SI	TE Ec			
DATE FEB	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
14 14 14 14	1657 1700 1702 1704 1706	1.00 10.0 20.0 30.0 39.0	227 227 227 219 219	8.3 8.3 8.3 8.2 7.9	9.0 9.0 9.0 8.5 8.0	.90	11.6 11.6 11.6 11.5 10.4	104 104 104 102 90	77 71
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG'L AS CA)	MAG NE- SIUM, DIS- SOLVED 'MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
FEB 14 14 14 14	16 12	27 25	2.4	14	.7	2.7	74 73	61 60	0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB 14 14 14 14	8.6 7.6	27 28	1.5	120 120	.030	.010	.040	30 130	<10 20
			302	714095372	201 SITE F	, c			
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	FEB 14 14 14	1720 1722 1724 1726	1.00 10.0 20.0 28.0	227 227 227 227	8.3 8.2 7.8 7.8	9.0 8.5 8.0 8.0	11.6 11.3 10.2 9.8	104 100 89 85	

TABLE 17.--Chemical-quality survey of Lake Conroe, February 14, 1979--continued $303129095360501 \ \ SITE \ G_C$

DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
FEB 14 14 14	1755 1758 1800 1802	1.00 10.0 20.0 28.0	146 130 107 107	7.2 7.0 6.9 6.9	13.0 11.5 8.5 8.5	.30	8.8 8.0 7.8 7.8	86 75 69 69	49 34
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE - SIUM, DIS - SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
FEB 14 14	12	17	1.5	8.6	.6	2.8	45	37	0
14	7	12	1.1	6.3	.5	2.5	34	28	0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO - GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
FEB 14 14	10	19	9.3	91 	.080	.080	.130	250	30
14 14	10	9.0	9.1	67	.040	.050	.130	300	20

TABLE 18.--Chemical-quality survey of Lake Conroe, June 15, 1979

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

30212/095335501 SITE A_C

DATE	TIN	1 E	SAM- PLING DEPTH (FEET	C: C: DI AI	PE- IFIC ON- JCT- NCE MHOS)		AND- RD		PER- JRE G C)	TRAM PAI ENC (SECC DISE (M)	R- CY CHI K)	D SO	GEN, IS- LVED G/L)	OXYGE DIS SOLV (PER CEN SATU ATIO	ED I	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
JUN 15 15 15 15	091 091 091 091 092	14 16 18	1.0 10.0 20.0 30.0 40.0 55.0		186 190 190 194 210 269		8.6 7.6 7.4 7.0 6.8 7.2	4	28.0 26.0 25.5 25.0 22.0	1.	.80		10.0 7.2 6.4 3.9 .1		27 88 78 47 1 2	61 80	
DATE	CALCI DIS- SOLV (MG/ AS C	ED L	MAGNE SIUM DIS- SOLVE (MG/I AS MG	y SOI D SOI (1	DIUM; LS- LVED MG/L B NA)	SO!	DIUM AD- RP- ION TIO	SI DI SOI	CAS- LUMy LS- LVED G/L K)	BICA BONA FET-F (MGA AS	TE LD L	LIN FI (M	ELD G/L	CAR BONA FET-F (MG/ AS CO	TE I LD S L	JLFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUN 15 15 15 15	21		-	- - -			.6		2.5	1	62		54 90		2	8.4	15
DA	TE,	FLUO- RIDE; DIS- SOLVI (MG/I AS F)	ED (LICA; IS- OLVED MG/L AS IO2)	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS. S- VED	NITI GEI NO2+I TOTA (MG	N; NO3 AL /L	NIT GE AMMO TOT (MG AS	N; NIA F AL /L	PHO HOR TOT (MG AS	RUS; TAL G/L	ARSEN DIS SOLV (UG,	5- /ED S /L	ARIUM; DIS- OLVED (UG/L AS BA)	DI SOI (UC	S- VED
15 15 15 15		•	10	2.1		97 140	<	100		040 040 100 860		.010 .010 .010 .050		1	200	-	<2 <2
DA	.TE	CHRO- MIUM: DIS- SOLVI (UG/I AS CI	CC ED S L (PPER, PIS- OLVED UG/L S CU)	IRO DI SOL (UG AS	S- VED /L	LEA DI SOL (UG AS	S- VED /L	MAN NES DI SOL (UG AS	E; h S- VED /L	SOI (UC	CURY IS- LVED G/L HG)	SELI NIUN DIS SOLV (UG, AS	My S S- /ED /L	ILVER DIS- SOLVEI (UG/L AS AG)	DI SOI (U(IC; S- VED S/L ZN)
15 15 15 15		•	ND	ND		50 30 30 420		ND		3 30 740 700		<.1 <.1		<1 <1	NI NI	• • •	<3 <3

TABLE 18. -- Chemical - quality survey of Lake Conroe, June 15, 1979 -- continued

302132095333701 SITE A1

DATE JUN	TIME	SAM-PLING DEPTH (FEET)	SPE= CIFIC CON= DUCT= ANCE (UMHOS)	PH (STAND = ARD UNITS)	TEMPER = ATURE (DEG C)	OXYGEN, DIS< SOLVED (MG/L)	OXYGEN, DIS= SOLVED (PER= CENT SATUR= ATION)				
15 15 15 15	0845 0847 0849 0851 0853 0855	1.00 10.0 20.0 30.0 40.0 54.0	186 190 190 195 210 256	8.5 7.6 7.3 6.9 6.7 7.0	27.0 26.0 25.5 24.5 22.0 19.0	9.7 7.3 6.2 3.8 .1	121 89 75 45 1 2				
302245095365301 SITE B _C											
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE= CIFIC CON= DUCT= ANCE (UMHOS)	PH (STAND = ARD UNITS)	TEMPER = ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS~ SOLVED (PER~ CENT SATUR~ ATION)				
JUN 15 15 15	0825 0827 0829 0831	1.00 10.0 20.0 30.0	183 183 183 155	8.5 7.4 6.8 6.5	27.5 26.5 25.5 24.5	9.2 6.3 3.4 .2	116 78 41 2				
	302323095341201 SITE C _C										
DATE	TIME	SAM≂ PLING DEPTH (FEET)	SPE= CIFIC CON= DUCT= ANCE (UMHOS)	PH (STAND= ARD UNITS)	TEMPER= ATURE (DEG C)	OXYGEN, DIS= SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)				
JUN 15 15 15 15	0955 0957 0959 1001 1003	1.00 10.0 20.0 30.0 40.0	183 183 190 190 210	8.5 8.4 7.3 6.8 6.8	27.0 26.5 25.5 24.5 22.5	9.7 9.2 6.3 2.8	121 114 76 33 2				
			30232009	533400 1 S	ITE C _l						
DATE	TIME	SAM= PLING DEPTH (FEET)	SPE= CIFIC CON= DUCT= ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER-ATURE	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS= SOLVED (PER= CENT SATUR= ATION)				
JUN 15 15 15 15 15	1010 1012 1014 1016 1018 1020 1022	1.00 10.0 20.0 30.0 40.0 50.0 58.0	183 183 190 190 214 233 240	8.6 8.5 7.3 7.0 6.8 7.0	27.5 26.5 25.5 24.5 22.0 20.0	9.6 9.2 6.3 3.3 .1	121 114 76 39 1 1				

TABLE 18. -- Chemical - quality survey of Lake Conroe, June 15, 1979 -- continued

302448095374101 SITE D_C

	DATE JUN 15 15	TIME 1030 1032 1034	SAM- PLING DEPTH (FEET) 1.00 10.0 20.0	SPE= CIFIC CON= DUCT= ANCE (UMHOS)	PH (STAND-ARD UNITS) 8.6 7.0 6.9	Ą	EMPER = ATURE DEG C) 28.0 26.0 25.5	OXYGEN, DIS= SOLVED (MG/L) 9.2 4.6 4.2	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	15	1036	27.0	150	6.6	TTE	25.0	.1	1	
	302607095360901 SITE E _C									
DATE	TI ME	SAM« PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND= ARD UNITS)	TEMPER- ATURE (DEG C)	(5	PANS- PAR- ENCY SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JUN 15 15 15 15	1050 1052 1054 1056 1058	1.00 10.0 20.0 30.0 43.0	177 177 177 188 222	8.7 8.1 7.1 6.7 6.9	28.0 26.5 25.5 24.0 22.0		1.50	9.9 8.1 5.4 1.2	125 100 65 14 2	58 72
DATE	HARD= NESS, NONCAR= BONATE 'MG/L CACO3)	CALCIUM DIS= SOLVED (MG/L AS CA)	MAGNE= SIUM, DIS= SOLVED (MG/L AS MG)	SODIUM, DIS~ SOLVED (MG/L AS NA)	SODIUM AD = SORP = TION RATIO	5	POTAS = SIUM, DIS = SOLVED (MG/L AS K)	BICAR = BONATE FET = FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR= BONATE FET=FLD (MG/L AS CO3)
JUN 15 15 15 15	6	20	1.9	11	.7		2.4	59 88	52 72	2 0
DATE	SULFATE DIS= SOLVED (MG/L AS SO4)	CHLO≈ RIDE, DIS≈ SOLVED (MG/L AS CL)	SILICA, DIS= SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI= TUENTS, DIS= SOLVED (MG/L)	NITRO-GEN, NO2+NO3 TOTAL (MG/L AS N)	AN T	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	PHOS← PHORUS, TOTAL (MG/L AS P)	IRON, DIS= SOLVED (UG/L AS FE)	MANG A= NESE, DIS= SOLVED (UG/L AS MN)
JUN 15 15 15 15	7.1 == == 7.1	15 16	2.0	93 == == 120	<.100 .060 <.100		.030 .070 .430	.020 .020 .100	30 70 1100	<10 120 2500
	302714095372201 SITE F _C									
	DATE	TIME	SAM« PLING DEPTH (FEET)	SPE= CIFIC CON= DUCT= ANCE (UMHOS)	PH (STAND- ARD UNITS)	A	EMPER- LTURE DEG C)	OXYGEN, DIS= SOLVED (MG/L)	OXYGEN, DIS= SOLVED (PER= CENT SATUR= ATION)	
	JUN 15 15	1120 1122 1124	1.00 10.0 24.0	170 170 120	8.7 6.8 6.2		28.0 25.5 24.5	9.5 3.4 .1	120 41 1	

TABLE 18.--Chemical-quality survey of Lake Conroe, June 15, 1979--continued $303129095360501~{\rm SITE}~{\rm G}_{\rm C}$

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND= ARD UNITS)	TEMPER= ATURE (DEG C)	TRANS-PAR-ENCY (SECCHIDISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JUN 15 15 15	1155 1157 1159 1201	1.00 10.0 20.0 33.0	124 129 153 160	8.2 6.4 6.4 6.5	29.5 25.5 25.0 25.0	1.20	9.0 .2 .1	118 2 1	41 552
DATE	HARD = NESS, NONCAR = BONATE (MG/L CACO3)	CALCIUM DIS= SOLVED (MG/L AS CA)	MAGNE = SIUM, DIS = SOLVED (MG/L AS MG)	SODIUM, DIS= SOLVED (MG/L AS NA)	SODIUM AD= SORP= TION RATIO	POTAS= SIUM, DIS= SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR = BONATE FET = FLD (MG/L AS CO3)
JUN 15 15 15	3	14 18	1.4	6.4 8.1	.5	2.4	46 63	38 52	0
DATE	SULFATE DIS= SOLVED (MG/L AS SO4)	CHLO = RIDE, DIS= SOLVED (MG/L AS CL)	SILICA, DIS= SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI = TUENTS, DIS= SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO = GEN, AMMONIA TOTAL (MG/L AS N)	PHOS= PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
JUN 15 15 15	7.1 == 8.4	10	6.8 7.9	71 93	<.100 .020 .010	.030 .060	.070 .160	140 560 1500	20 300 780

TABLE 19.--Chemical-quality survey of Lake Conroe, August 17, 1979

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

30212/095335501 SITE A_C

DATE	TI	ME	SAM- PLING DEPTH (FEET)	CI CC DU AN	PE- FIC DN- JCT- JCE HOS)	PH (STAND- ARD UNITS)	AT	PER- URE G C)	TRAN PAF ENC (SECC DISK (M)	R- CY CHI ()	SOI	GEN, IS- LVED G/L)	SOL (PE CE SAT	S- VED	AS	SS G/L	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
AUG 17 17 17 17 17 17 17	08 08 08 08 08 08 08	34 36 38 40 42	1.00 10.0 20.0 30.0 40.0 50.0 60.0		184 184 184 194 222 255 300 321	7.8 7.8 7.3 7.0 7.1 7.1 7.1		29.0 29.0 29.0 27.0 23.0 20.0 17.5	1.	.90		6.3 6.0 3.9 .0 .0		82 78 51 0 0 0		59 96	5 0
DATE	CALC DIS- SOL' (MG AS	- VED /L	MAGNE- SIUMy DIS- SOLVED (MG/L AS MG)	SOI DI SOI (M	OIUM; S- VED IG/L S NA)	SODIUM AD- SORP- TION RATIO	S: D: SO: (M:	TAS- IUM; IS- LVED G/L K)	BICA BONA FET-F (MG/ AS HCO3	TE LD L	AS	TY ELD G/L		/L		S- LVED G/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
AUG 17 17 17 17 17 17 17	21		1.7		0	.6 .6		2.5	1	67		55		0		8.3	20
DA	.TE	FLUO- RIDE; DIS- SOLVH (MG/I AS F)	DI SO ED (M	ICA; S- LVED G/L S O2)	SOLID SUM O CONST TUENT DIS SOLV (MG/	F NI' I- G' Sy NO2- - TO' ED (M'	TRO- EN; +NO3 TAL G/L N)	NIT GEI AMMOI TOT (MG AS	Ny NIA F AL /L	PHOR HOR TOTA (MG AS	US; AL /L	ARSEN DIS SOLV (UG, AS	S- /ED /L	BARII DIS SOLVI (UG, AS E	ED /L	CADM DI SOL (UG AS	S- VED /L
17 17 17 17 17 17		-	0	2.5		 	.010		010	<	010 010 010 260		1		100		<2 <2
DA AUG	TE.	CHRO- MIUM, DIS- SOLVE (UG/I AS CE	COP DI ED SO L (U	PERy S- LVED G/L CU)	IRON DIS SOLV (UG/ AS F	ED SO: L (U	ADy IS- LVED G/L PB)	MANG NESI DI: SOL' (UG: AS I	Ey M S- VED /L	IERCI DI: SOL' (UG AS	S- VED /L	SELI NIUN DIS SOLV (UG, AS	M; S- /ED /L	SILVI DIS SOLV (UG, AS	S- VED /I	ZIN DI SOL (UG AS	S- VED /L
17 17 17 17 17 17	•••		ND 	ND ND	1	10 70 30 	ND ND	·	<10 520 620 800		.2		<1 <1		ND		2

TABLE 19.--Chemical-quality survey of Lake Conroe, August 17, 1979--continued $302132095333701 \ SITE \ A_{\bar{1}}$

DATE AUG	TIME	SAM- PLI NG DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
17 17 17 17 17	0906 0908 0910 0912 0914 0916	1.00 10.0 20.0 30.0 40.0 46.0	184 184 184 194 222 245	7.8 7.7 7.2 6.9 6.9 7.0	29.0 29.0 28.5 27.0 23.0 22.0	6.2 6.0 3.8 .0 .0	81 78 49 0 0
			30224509	5365301 S	ITE B _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 17 17 17	0807 0809 0811 0813	1.00 10.0 20.0 29.0	184 184 184 199	7.8 7.8 6.7 6.7	29.5 29.5 28.5 27.5	6.3 6.2 .3	82 81 4 1
			30232309	5341201 S	ITE C _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 17 17 17 17 17	0940 0942 0944 0946 0948 0950	1.00 10.0 20.0 30.0 40.0 49.0	182 182 182 200 216 259	8.0 7.9 7.1 6.8 6.8	29.5 29.0 29.0 26.5 24.0 22.0	6.6 6.5 3.1 .1	86 84 40 1 1
			30232009	5334001 S	ITE C1		
DATE	TIME	SAM- PLI NG DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 17 17 17	0925 0927 0929 0931	1.00 10.0 20.0 34.0	182 182 182 200	7.9 7.9 7.2 6.8	29.0 29.0 29.0 26.5	6.5 6.4 4.0 .1	84 83 52 1

TABLE 19.--Chemical-quality survey of Lake Conroe, August 17, 1979--continued

302448095374101 SITE D_C

	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 17 17 17 17	1004 1006 1008 1010 1012	1.00 10.0 20.0 30.0 38.0	181 181 181 215 254	8.2 8.2 6.9 6.6	30.0 30.0 29.0 26.5 25.0	7.1 6.9 1.4 .1	93 91 18 1	
				30260709	95360901 S	SITE E _C			
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 17 17 17 17	1030 1032 1034 1036 1038	1.00 10.0 20.0 30.0 43.0	180 180 180 202 253	8.1 7.9 7.3 6.8 6.6	30.0 29.5 29.0 26.0 23.0	2.00	6.8 6.6 4.8 .1	89 86 62 1	57 76
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
AUG 17 17 17 17	3 0	20 27	1.7	11 12	.7 .6	2.5	66 110	54 90	0 0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
AUG 17 17 17 17	7.4	19 21	2.7 9.7	97 150	.010 .010 .010 .010	.120 .010 .200 1.80	.020 .040 .050 .420	<10 80 510 4800	40 160 1100 3600
				30271409	5372201 S	ITE F _C			
	DATE	TI ME	SAM- PLI NG DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	
	AUG 17 17	1055 1057 1059	1.00 10.0 23.0	180 180 180	8.1 8.0 6.7	30.0 30.0 29.0	6.7 6.3 .1	88 83 1	

TABLE 19.--Chemical-quality survey of Lake Conroe, August 17, 1979--continued

303129095360501 LAKE CONROE SITE G_C WATER-QUALITY RECORDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
AUG 17 17	1130 1132 1134	1.00 10.0 20.0	177 177 181	7.7 7.1 6.5	30.5 30.0 29.0	1.00	6.6 4.8 .1	87 63 1	54 54
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)
AUG	2	10			7	2.5		50	0
17 17	3	19	1.7	11	• 7 •	2.5	64	52 	0
17	1	19	1.6	11	• 7	2.5	65	53	0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
AUG 17 17	7.2 8.9	19 19	4.4 9.0	96 100	.010 .020 .010	.070 .010 .300	.030 .060 .220	<10 90 960	20 150 640

TABLE 20.--Chemical-quality survey of Lake Conroey January 29, 1980

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

30212/095335501 SITE A_c

							,				
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRAN PAR ENC (SECCI DISK (M)	Y OXY HI D SC	GEN, DIS- DLVED	XYGEN; DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCAL BONATE (MG/L CACO3)
JAN 29 29 29 29 29	1135 1137 1139 1141 1143 1145	1.00 10.0 20.0 30.0 40.0 54.0	185 185 185 185 185 185	7.4 7.4 7.4 7.4 7.4	12.0 12.0 12.0 12.0 12.0 12.0	1.:	20	8.8 8.7 8.6 8.6 8.6	81 80 80 80 80	65 60	6
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM; DIS- SOLVED (MG/L AS K)	BICAL BONA FET-FI (MG/I AS HCO3)	TE LIN LD FI L (M	IG/L FI S	CAR- BONATE ET-FLD (MG/L S CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE; DIS- SOLVED (MG/L AS CL)
JAN 29 29 29 29 29	23	1.8	10	.6 .5	2.6	•	72	59 59	0 0	6.6	18
DATE	FLUO- RIDE y DIS- SOLVED (MG/L AS F)	SILICAy DIS- SOLVED (MG/L AS SIO2)	SOLIDSY SUM OF CONSTI- TUENTSY DIS- SOLVED (MG/L)	NITRO- GEN y NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN;AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO GENE TOTAL (MG/I AS N)	PHO L TO L (M	RUSy TAL IG/L	RSENIC DIS- SOLVED (UG/L AS AS)	BARIUMy DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)
JAN 29 29 29 29 29	-10 	1.3	99 92	.090	.42 .38 		51 47 49	.020	1 1	80 80	<1 <1
DA.	(UG	My COPP - DIS VED SOL /L (UG	- DI VED SOL /L (UG	S- DI VED SOL	NDy NES S- DI NED SOI I/L (UG	S- VED :	ERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM# DIS- SOLVE! (UG/L AS SE	(UG	S- DI VED SOL /L (UG	S- VED /L
29 29 29 29		0	0	20 10 120	0	<1 10 50	.0		- -	0	7 6
				3021	320953337	01 SITI	ЕАŢ				

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 29	1200	1.00	185	/ • 4	12.0	8.8	81
29 29	1202 1204	10.0 20.0	185 185	7.4 7.4	12.0	8.8 8.8	81 81
29	1206	30.0	185	7.4	12.0	8.8	81
29	1208	40.0	185	1.4	12.0	8.8	81
29	1210	53.0	185	1.4	12.0	8.8	81

TABLE 20.--Chemical-quality survey of Lake Conroe, January 29, 1980--continued $302245095365301~{\rm SITE}~B_{\rm C}$

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 29 29 29	1115 1117 1119 1121	1.00 10.0 20.0 29.0	188 188 188 188	7.6 7.6 7.6 7.6	12.5 12.5 12.5 12.5	9.4 9.4 9.4 9.4	88 88 88
			30232309	5341201 S	SITE C _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 29 29 29 29 29 29	1245 1247 1249 1251 1253 1255	1.00 10.0 20.0 30.0 40.0 46.0	185 185 185 185 185 185	7.5 7.4 7.4 7.4 7.4	12.0 12.0 12.0 12.0 12.0	8.5 8.5 8.5 8.4 8.4	79 79 79 79 78 78
			30232009	5334001 S	ITE C _l		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 29 29 29 29 29 29	1220 1222 1224 1226 1228 1230	1.00 10.0 20.0 30.0 40.0 49.0	185 185 185 185 185 185	7.5 7.5 7.5 7.5 7.4 7.3	12.0 12.0 12.0 12.0 12.0	8.5 8.5 8.4 8.4 8.3 8.0	79 79 78 78 77 74
			30244809	5374101 S	ITE D _C		
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 29 29 29	1305 1307 1309 1311	1.00 10.0 20.0 30.0	185 185 185 185	7.7 7.7 7.6 7.6	12.5 12.5 12.5 12.5	9.1 9.1 9.1 9.1	85 85 85 85

TABLE 20.--Chemical-quality survey of Lake Conroe, January 29, 1980--Continued

302607095360901 SITE Ec

29 29	1335 1337 1339	SAM- COPLING DEPTH A (FEET) (U	UCT- (S' NCE / MHOS) UN: 183 183 183	ARD A' ITS) (DI 7.4 7.4 7.4	MPER- (S TURE D EG C) 12.0 12.0 12.0	RANS- PAR- ENCY ECCHI ISK) (M)	OXY I D SO (M	SGEN, (IS- LVED S G/L) A 8.7 8.7	PER- NI CENT (1 ATUR- A TION) CA	ARD- NI ESS NOI MG/L BOI AS (I ACO3) CA	ARD- ESS, NCAR- NATE MG/L ACO3)
	1341 1343	30.0 36. 0	183 183	7 • 4 7 • 4	12.0 12.0	-	- -	8.7 8.7	81 81	60	2
DATE	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS-	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BC FE?	ICAR- ONATE I-FLD MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	
JAN 29 29 29		1.9	9.8 	.6 	2.5		70 	57 		4.1 	
29	21	1.9	9.6	.6	2.5	İ	71	58	0	3.6	
DATE	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	AS	CONSTI-	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)) T(1)	ITRO- GEN, OTAL MG/L S N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)	
JAN	4.6	4.0	0.4	000				000	20	0	
29 29		- 1.2		.090	•42 		.51	•020		2	
29 29		 									
29	16	1.3	91	.090	.35		.44	.030	20	4	
				3027140	95372201	SITE	F _C				
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	A'	MPER- TURE EG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)		
	JAN 29 29 29	. 1357	1.00 10.0 24.0	183 183 183	7 • 5 7 • 4 7 • 4		12.5 12.5 12.5	9.0 8.9 8.9	83		

TABLE 20.--Chemical-quality survey of Lake Conroe, January 29, 1980--continued $303129095360501 \ \mbox{SITE} \ \mbox{G}_{\mbox{\scriptsize C}}$

DATE JAN	TIME	SAM- PLING DEPTH (FEET)	ANCE	PH STAND- ARD NLTS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYO I DI SOI	SEN, (1 SEN, (1 S- C LVED SA	PER- NI CENT (NATUR- A		HARD- NESS, NONCAR- BONATE (MG/L CACO3)
29	1430	1.00	270	7.4	12.0	.90		8.4	78	81	19
29 29	1432 1434	10.0	300 340	7.3 7.2	12.0 12.0			8.2 7.0	76 65		
29	1436	29.0	340	7.2	12.0		-	7.0	65	97	26
DATE JAN	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- D SOLVE (MG/I D AS MG	M, SODIUM - DIS- ED SOLVED L (MG/L G) AS NA	SORF TIO RATI	O- SI O- DI ON SOL O (MG- AS	JM, BC S- FET VED (N /L A K) HC	CAR- ONATE C-FLD G/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	SULFA: DIS- SOLVI (MG/I AS SO	ED.
29		2.6		1	4	.0	76	62	0	13	
29 29				-							
29		3.0	26	1	4	. 2	87	71	0	19	
DATE	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	ÀS	CONSTI	NITR GEN NO2+N TOTA D (MG/	N, MONÍ 103 ORGA L TOT L (MG	AM- A + NI NIC G AL TO /L (M	TRO- EN, TAL G/L S N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA NESE DIS- SOLVI (UG/I AS MI	ED
JAN 29 29		9.	.8 15		50	.70	•75	.080	100		8
29 29		15	 19		60	.66	.72	.120	90		30

TABLE 21.--Chemical-quality survey of Lake Conroe, May 22, 1980

(UMHOS-micromhos per centimeter at 25° Gelsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <- less than)

302127095335501 SITE Ac

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS PAR- ENCY (SECCH DISK) (M)	OXYGEN I DIS-	CENT D SATUR-	HARD- NESS (MG/L AS CACO3)	HARD- NESS; NONCAR- BONATE (MG/L CACO3)
MAY 22 22 22 22 22 22	1000 1002 1004 1006 1008 1010	1.00 10.0 20.0 30.0 40.0 50.0 58.0	188 188 188 190 190 223 223	8.4 8.4 8.4 7.2 6.8 7.1	25.5 25.0 25.0 22.0 20.0 18.0	-	8 8. - 8. - 5. - 1. - 1.	7 105 7 105 3 61 9 21 2 15	67 74	10 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUMy DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM; DIS- SOLVED (MG/L AS K)	BICAR BONAT FET-FL (MG/L AS HCO3)	E LINITY D FIELD (MG/L AS	BONATE FET-FLD (MG/L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 22 22 22 22 22 22	23	2.3	10	.6	2.4	-	6 5		5.5 3.9	1/
DATE	FLUO- RIDEY DIS- SOLVED (MG/L AS F)	SILICAY DIS- SOLVED (MG/L AS SIO2)	SOLIDS; SUM OF CONSTI- TUENTS; DIS- SOLVED (MG/L)	NITRO- GEN; NO2+NO3 TOTAL (MG/L AS N)	NITRO- GENYAM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO GEN TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L	DIS- SOLVED	BARIUMy DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)
MAY 22 22 22 22 22 22	.10	1.8	99	.010 .010 .060	.60 .47 .93	.6	3 .02	0 0 0	70 100	<1 <1
DA	CHRO MIUI DIS- SOL' (UG TE AS	My COPP - DIS VED SOL /L (UG	VED SOL	S- DI VED SOL	Dy NES S- DI VED SOL	S- VED S	RCURY N DIS- OLVED S UG/L (OLVED SOI	IS- DI LVED SOI G/L (UC	ICy S- VED S/L ZN)
22 22 22 22 22 22	•••	0	0	<10 150 540	0	7 20 210 210	.5 .4	0 0	0 0	<3 <3

TABLE 21.--Chemical-quality survey of Lake Conroe, May 22, 1980--continued $302132095333701 \ \mbox{SITE A}_{\mbox{\scriptsize 1}}$

DATE	TIME	SAM- PLI NG DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 22 22 22 22 22 22	1036 1038 1040 1042 1044 1046 1048	1.00 10.0 20.0 30.0 40.0 50.0 54.0	188 188 188 190 190 200 223	8.4 8.4 7.1 6.8 6.8	25.5 25.0 25.0 22.0 19.5 19.0 18.5	8.6 8.6 8.7 4.8 2.0 1.1	105 104 105 55 22 12
			30224509	5365301 S	ITE B _c		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 22 22 22	0942 0944 0946 0948	1.00 10.0 20.0 32.0	175 175 190 205	8.4 8.4 7.0 6.7	25.5 25.5 23.0 22.0	8.7 8.8 4.0 .8	106 107 47 9
			30232309	5341201 S	ITE C _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 22 22 22 22 22	1104 1106 1108 1110 1112 1114 1116	1.00 10.0 20.0 30.0 40.0 50.0 55.0	188 188 188 190 200 200 215	8.4 8.3 8.1 7.0 6.8 6.8	25.5 24.5 24.0 22.0 19.5 19.5	8.6 8.4 8.0 4.0 1.2 1.2	105 101 95 46 13 13
			30232009	5334001 S	ITE C1		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 22 22 22 22 22	1122 1124 1126 1128 1130 1132	1.00 10.0 20.0 30.0 40.0 51.0	188 188 188 190 200	8.4 8.2 8.0 7.0 6.8 6.8	25.0 24.0 24.0 23.5 19.5	8.5 8.4 8.0 4.7 1.7	102 100 95 55 18 8

TABLE 21.--Chemical quality survey of Lake Conroe, May 22, 1980--continued

302448095374101 SITE D_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 22 22	1157 1159	1.00	173 173	8.7 8.7	26.0 25.5	9.0 9.2	111 112
22 22	1201 1203	20.0 31.0	200 200	6.7 6.8	22.5 21.5	1.1	13 8

302607095360901 SITE E_C

DATE	TIME	SAM- PLING DEPTH (FEET)	ANCE	ARD	I EMPER- (SE ATURE DI	RANS- PAR- ENCY O ECCHI ISK)	OXYGEN, (DIS- SOLVED S	PER- N CENT (SATUR-		HARD- NESS, NONCAR- SONATE (MG/L CACO3)
22 22	1228 1230 1232 1234 1236	1.00 10.0 20.0 30.0 40.0	187 187 187 195 205	8.5 8.1 7.1 6.8 6.7	25.0 24.5 22.5 21.0 20.0	1 . 80	9.1 8.1 5.6 3.0	110 96 64 34 9	66 71	 6
DATE	CALCIU DIS- SOLVE (MG/L AS CA	DIS- D SOLVE (MG/I	1, SODIUM DIS- D SOLVED MG/I	SORP- TION RATIO	SIUM, DIS- SOLVED	BICAR BONAT FET-FL (MG/L AS HCO3)	TE LINITY D FIELD (MG/L AS	CAR- BONATE FET-FLD (MG/L AS CO3)	SOLVE (MG/L	D.
MAY 22 22 22 22	-		 	· 		-	58 50 6 6		· -	- - -
DATE	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	DIS- SOLVE D (MG/I AS	CONSTI TUENTS DIS- SOLVE	F NITRO L- GEN, S, NO2+NO - TOTAL ED (MG/L	MONÍA + 3 ORGANIC TOTAL	NITRO GEN, TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L	IRON, DIS- SOLVED (UG/L AS FE)	(UG/L	.D
MAY 22 22 22 22			 	.01	.72	1.3	3 .020	630	2	5
				302714	0 95 372201 \$	SITE F.				
	DATE	TIME	SAM- PLING DEPTH (FEET	SPE- CIFIC CON- DUCT- H ANCE	PH (STAND- ARD	TEMPER ATURE (DEG C	SO LVED	CENT SATUR-		
	MAY 22 22 22	. 1306	10.0) 19	6 7.1	25. 23. 22.	5 5.0	59		

TABLE 21.--Chemical-quality survey of Lake Conroe, May 22, 1980--continued $303129095360501~{\rm SITE}~{\rm G}_{\rm C}$

DATE	TIME D	AM- COLLING DUEPTH A	UCT- (ST	ARD A	E APER- (SE CURE DI	CCHI I	GEN, (F SCEN, (F DIS- (DLVED SA	PER- NE CENT (MATUR- A	RD- NE SS NOT IG/L BOT S (1	ARD- ESS, NCAR- NATE MG/L ACO3)
MAY 22 22 22	1355 1357 1359 1401	1.00 10.0 20.0 33.0	112 160 180 183	6.5 6.4 6.4 6.4	26.0 22.5 21.5 21.5	.46 	4.9 .9 .8	60 10 9 9	38 59	5 10
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	
MAY 22 22 22		1.4	6.3	.5 .7	2.9 3.1	40 60	33 49	0 0	3.4 6.8	
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
MAY 22 22 22 22		10 12	68 110	.020 .020 	1.1 1.0 1.3	1.1	.120 .140 	170 240 1100	40 200 640	

TABLE 22.--Chemical-quality survey of Lake Conroey September 11, 1980

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

302127095335501 SITE A_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	P. E. (SE) DI	ANS- AR- NCY CCHI SK)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESSY NONCAR- BONATE (MG/L CACO3)
SEP 11 11 11 11	1026 1028 1030 1032 1034 1036	1.00 10.0 20.0 30.0 40.0 51.0	200 200 200 200 232 267	7.7 7.4 1.3 6.8 6.5 6.3	28.5 28.0 27.5 27.5 21.5 19.0		1.77	8.1 /.2 6.2 4.5 .1	103 90 78 56 1	64 85	13 0
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUMy DIS- SOLVED (MG/L AS K)	BOI FET (MC	CAR- NATE FLD G/L S	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE; DIS- SOLVED (MG/L AS CL)
SEP 11 11 11 11	22	2.1	12	.7	2.8		62	51 98	0 0	5.1	23
DATE	FLUO- RIDE; DIS- SOLVED (MG/L AS F)	SILICA; DIS- SOLVED (MG/L AS SIO2)	SOLIDSY SUM OF CONSTI- TUENTSY DIS- SOLVED (MG/L)	NITRO- GEN; NO2+NO3 TOTAL (MG/L AS N)	NITRO- GENYAM- MONIA + ORGANIC TOTAL (MG/L AS N)	G1 TO: (M0	TRO- EN; TAL G/L N)	PHOS- PHORUS; TOTAL (MG/L AS P)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUMy DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)
SEP 11 11 11 11	.10 	3.2	100 150	.000	.67 .58 .60		.67 .58 .60	.040 .030 .050 	2 15	50 200	<1 <1
DA	CHR MIUI DIS SOL' (UG TE AS	My COPP - DIS VED SOL /L (UG	- DI VED SOL /L (UG	S~ DI VED SOL /L (UG	Dy NES S- DI VED SOL	S- VED	MERC DI SOL (UG AS	S- DI VED SOL /L (UG	My SILV S- DI VED SOL /L (UG	S- DI VED SOL	S- VED
11 11 11 11	•••	20		<10 20 120	1 1 4	9 30 290 800		.0 .0	0	0 0	<3 5

TABLE 22.--Chemical-quality survey of Lake Conroe, September 11, 1980--continued

302132095333701 SITE A1

DATE SEP	TIME 1055	SAM- PLING DEPTH (FEET)	SPE- C1F1C CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
11 11 11 11	1057 1059 1101 1103 1105	10.0 20.0 30.0 40.0 49.0	200 200 200 232 260	7.7 7.1 6.7 6.5 6.4	28.0 27.5 27.0 21.5 19.5	7.7 6.2 3.9 .2	96 78 48 2 2
			30224509	5365301 S	ITE B _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP 11 11 11	1002 1004 1006 1008	1.00 10.0 20.0 26.0	200 200 200 200	7.9 7.1 6.7 6.5	29.0 28.0 27.5 27.5	8.3 5.8 2.8 .4	106 72 35 5
			30232309	5341201 S	ITE C _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP 11 11 11 11	0920 0922 0924 0926 0928	1.00 10.0 20.0 30.0 44.0	200 200 200 200 245	7.9 7.3 7.0 6.8 6.5	28.5 28.0 27.5 27.0 21.5	8.5 6.8 5.7 4.5	108 85 71 56 6
			30232009	5334001 S	ITE C ₁		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP 11 11 11 11	0938 0940 0942 0944 0946	1.00 10.0 20.0 30.0 35.0	200 200 200 200 238	7.8 7.1 6.7 6.6 6.6	29.0 27.5 27.5 27.0 22.0	8.2 6.2 4.5 3.5	105 78 56 43 2

TABLE 22.--Chemical-quality survey of Lake Conroe, September 11, 1980--continued

302448095374101 SITE D_C

					30244	80953741	101 SI	TE D _C					
	DAT		ri me	SAM- PLING DEPTH (FEET)	SPE- CIFICON- DUCT- ANCE (UMHO)	C PI - (STA AI	AND- RD	TEMPER ATURE (DEG C	SOL	SH, (SH, VED S	YGEN, DIS- OLVED PER- CENT ATUR- TION)		
	SEP 11. 11. 11.		0900 0902 0904	1.00 10.0 21.0	20	00 00 00	7.9 7.2 6.5	28. 28. 27.	0	8.2 5.9 1.4	104 74 17		
					30260	70953609	01 SI	TE Ec					
DATE	TIME	SAM- PLING DEPTH (FEET	CI CC DU AN	NCE	ARD	TEMPER- ATURE (DEG C)	TRA PA EN (SEC DIS (M	R- CY O: CHI K)	XYGEN, DIS- SOLVED (MG/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	D HA	ARD- ESS MG/L AS ACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
SEP 11 11 11	1136 1138 1140 1142 1144	1.00 10.0 20.0 30.0 40.0)	200 200 200 200 280	8.1 6.9 6.8 6.4 6.5	29.5 28.0 28.0 27.5 22.5	1	.49	9.2 5.2 4.6 .8	5 1	8 5 8 0 3	64 97	5 0
DATE	CALCI DIS- SOLV (MG/ AS C	UM ED SO L ()	AG NE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SORP- TIOI RATIO	- SI - DI N SOI	LVED	BICAR- BONATI FET-FLI (MG/L AS HCO3)	E LINI D FIE	TY LD B /L FE (CAR- ONATE T-FLD MG/L CO3)	SULFA DIS- SOLV (MG, AS SO	- VED /L
SEP 11 11	•		2.2	13		.7 2 	2.9	7:	-	59 	0	4	4.2
11 11			2.4	12		 .6 2	2.8	130		107	0		1.3
DATE	CHLO RIDE DIS- SOLV (MG/ AS C	ED (LICA, IS- DLVED MG/L AS LO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN NO2+NO TOTAL (MG/1	O- GEN, , MONI O3 ORGA L TOT L (MO	ANIC TAL	NITROGEN, TOTAL (MG/L AS N)	PHO R TO T	US, AL S /L (RON, DIS- OLVED UG/L S FE)	MAN NESI DIS SOL (UG) AS I	E, S- VED /L
SEP 11	. 22		4.5	110	.00	00	.79	.79	9 .	030	<10		10
11	•	 				00	 -62	.6	-	040	10		200
11			6.3	160			2.5	2.5	-	530	7200		000
					20274	/ O O E 2 7 2 2	001 071	The P					
	DATE	TIME	PL DE	AM- (LING E	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD UNITS)	TEMP ATU (DEG	OX ER- RE	XYGEN, DIS- SOLVED (MG/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	D PI PHO TO	HOS- DRUS, DTAL MG/L S P)	
	~		(1				(310	",			,	/	

.140 .210

SEP 11... 11...

1.00 10.0 20.0 200 207 220

TABLE 22.--Chemical-quality survey of Lake Conroe, September 11, 1980--continued

303129095360501 SITE G_C

DATE	TIME D	CI AM- CO LING DU EPTH AN	ICT- (ST NCE A	RD AT	I IPER- (SI TURE DI	ECCHI I	GEN, (F SO GEN, (F DIS- (DLVED SA	PER- NE CENT (N LTUR- A	HARI ARD NESS SS NONC IG/L BONA' IS (MG LCO3) CACC	S, AR- TE /L
SEP 11 11 11	1256	1.00 5.00 10.0 20.0	206 209 215 215 215	8.1 7.6 6.4 6.4	30.5 29.0 27.0 26.5 26.5	1.28	9.4 7.7 .1 .1	124 99 1 1	64 64	5 4
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	
SEP 11 11 11		2.3	13 14	.7 .8	2.8	73 74	60 61	0 0	5.1	
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)	
SEP 11 11 11	 	4.5	110 110	.000	.96 .90 	.96 .90 	.050 .070 .190 .110	<10 80 290	10 200 170	

TABLE 23.--Chemical-quality survey of Lake Conroey January 15, 1981

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

302127095335501 SITE A_C

DATE	TIME	SAM- PLING DEPTH	ANCE	ARD A	P E MPER- (SE TURE DI	CCHI I SK) SC	SC (GEN; (F DIS- C DLVED SA	PER- NE CENT (M TUR- A	ARD- N ESS NO MG/L BO AS (ARD- ESS, NCAR- NATE MG/L ACO3)
JAN 15 15 15 15 15	1030 1032 1034 1036 1038 1040	1.00 10.0 20.0 30.0 40.0 54.0	205 205 205 205 205 205 205	7.8 7.8 7.8 7.7 7.7 7.6	11.0 11.0 11.0 11.0 11.0	1.70	9.9 9.9 9.8 9.7 9.6 9.2	89 89 88 87 86 83	69	7 5
DATE	CALCIU DIS- SOLVE (MG/L AS CA	DIS- D SOLVE (MG/L	SODIUM, DIS- D SOLVED (MG/L	SORP- TION RATIO	POTAS- SIUMy DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDEy DIS- SOLVED (MG/L AS CL)	FLUO- RIDE; DIS- SOLVED (MG/L AS F)	
JAN 15 15			13	.7	2.7	62 	8.4	16 	•20 	
15 15 15		2.2		.7	2.5	62	7.2	16		
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI	NITRO- GEN; NO2+NO3 TOTAL D (MG/L	MONIA +	NITRO- GEN; TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUMy DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	
JAN 15 15			0 .260		.98	.020	0	90 	<1 	
15 15			180		.98 	.040				
15 15			0 .180		1.0	.040	1	90	2	
DATE	CHRO- MIUM, DIS- SOLVE (UG/L AS CR	(UG/L	DIS- D SOLVED (UG/L	(UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUMy DIS- SOLVED (UG/L AS SE)	SILVERY DIS- SOLVED (UG/L AS AG)	ZINC; DIS- SOLVED (UG/L AS ZN)	
JAN 15		0 <1			2	.2	0	1	<3	
15 15			- 30)	0					
15 15 15			0 30		30	.5	0	 1	30	
, , , ,					95333701 S					
								OXYGEN,		
	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)		
	JAN 15 15 15 15	. 1056 . 1058 . 1100	10.0 20.0 30.0	205 205 205 205 205	7.8 7.8 7.8 7.8 7.6	11.5 11.0 11.0 11.0	10.0 9.9 9.8 9.8 9.4	91 89 88 88 84		

TABLE 23.--Chemical-quality survey of Lake Conroe, January 15, 1981--continued $302245095365301 \ \mbox{SITE B}_{\mbox{\scriptsize C}}$

DATE JAN 15 15 15	TIME 1000 1002 1004 1006	SAM- PLING DEPTH (FEET) 1.00 10.0 20.0 28.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND-ARD UNITS) 8.2 8.1 7.9 7.7	TEMPER- ATURE (DEG C) 11.0 11.0 11.0	OXYGEN, DIS- SOLVED (MG/L) 10.3 10.1 10.1	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) 93 91 91
			30232309	5341201 S	ITE C _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 15 15 15 15	1118 1120 1122 1124 1126	1.00 10.0 20.0 30.0 43.0	205 205 205 205 205 205	7.8 7.7 7.7 7.7 7.5	11.0 11.0 11.0 11.0 11.0	9.7 9.6 9.5 9.5 9.1	87 86 85 85 82
			30232009	5334001 S	ITE C ₁		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 15 15 15 15	1139 1141 1143 1145 1147	1.00 10.0 20.0 30.0 37.0	205 205 205 205 205	7.7 7.7 7.7 7.7 7.7	11.5 11.0 11.0 11.0	9.6 9.5 9.5 9.5 9.6	87 85 85 85 86
			30244809	5374101 s	ITE D _C		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN 15 15	1202 1204 1206	1.00 10.0 22.0	205 205 205	7.8 7.9 7.8	11.5 11.0 11.0	9.9 9.8 9.8	90 88 88

TABLE 23.--Chemical-quality survey of Conroe, January 15, 1981--continued

302607095360901 SITE E_C

DATE	TI	ME	SAM PLI DEP (FE	NG TH	SPE- CIF CON- DUC ANCI	I C - I - E	PI (STA AF UNIT	AND- RD	TEMP ATU (DEG	RE	PA EI (SE(ANS- AR- NCY CCHI SK)	SOI	GEN, IS- LVED G/L)	SOI (PE CE SAT	S- VED	HARD NESS (MG/ AS CACO	L
JAN 15 15 15 15	123 123 123 123 123	21 23 25	1 10 20 30 37	.0 .0	4	205 205 205 205 205 205		7.6 7.6 7.6 7.5 7.6	1 1 1	1.5 0.5 0.5 0.5	1	.20		9.3 9.3 9.3 9.3		85 83 83 83		66 66
DATE	HARI NESS NONCA BONAT (MG/ CACO	AR- CE	CALC DIS- SOL' (MG AS	- VED /L	MAG N SIU DIS SOLV (MG/ AS N	JM, S- /ED /L	SODI DIS SOLV (MG AS	ED		ON	SI		ALK LINI FIE (MG AS	TY ELD G/L	SULF DIS SOL (MG AS S	VED /L	CHLORIDE DIS- SOLV (MG/ AS C	, ED L
JAN 15 15 15		3 4	23		2.	.0	12			.7 .7				63 62		6.7 6.6	16	
D.	ATE	DI: SOI (MC	LVED G/L	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	G NO 2 TO (M	TRO- EN, +NO3 TAL G/L N)	GEN MON ORG TO (M	TRO- ,AM- IA + ANIC TAL G/L N)	G TO (M	TRO- EN, TAL S/L N)	PHO TO (M	OS- RUS, TAL G/L P)	D SO (U	ON, IS- LVED G/L FE)	NES DI SOI (UG	NG A- SE, IS- LVED I/L MN)	
1 1 1	N 5 5 5 5		2.3		100		.160		.88 .79		1.0		.020		20 20		8 10	
							3027	1409	53722	01 S	ITE F	c						
	DAT	'E	TI	ME.	SAM- PLIN DEPI (FEE	IG YH	SPE CIF CON DUC ANC (UMH	IC T- E	PH (STA) ARI UNIT	D	TEMP ATU (DEG	RE	SOL	EN, S- VED /L)	OXYG DI SOL (PE CE SAT ATI	S- VED R- NT UR-		

12.0 9.7 89 11.0 9.6 86 11.0 9.6 86

1243 1245 1247

1.00 10.0 19.0

TABLE 23.--Chemical-quality survey of Lake Conroe, January 15, 1981--continued

303129095360501 LAKE CONROE SITÈ G_C WATER-QUALITY RECORDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN 15 15 15	1316 1318 1320 1322	1.00 10.0 20.0 26.0	228 228 228 228	8.8 8.4 8.6 8.6	10.5 10.5	1.80	10.8 10.5 10.5 10.5	97 93 93 94	62 64
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN 15 15 15	3 3	21 22	2.3	18 19	1	2.9 3.1	59 61	8.7 8.0	26 25
D	D1 S0 (1)	LICA, SUN LS- CON DLVED TUE MG/L E	STI- G ENTS, NO2 DIS- TO DLVED (M	TRO- GE EN, MO +NO3 OR TAL T G/L (GANIC G OTAL TO MG/L (N	EN, PHO TAL TO G/L (M	RUS, D TAL SO G/L (U	ON, NE IS- D LVED SO G/L (U	NG A- SE, IS- LVED G/L MN)
1	N 5 5 5	.3	110 120	.050	.82 1.1	.87 1.1	.040	<10 70	6 10

TABLE 24.--Chemical-quality survey of Lake Conroe, May 21, 1981

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

302127095335501 SITE A_c

DATE	TIME I	CI SAM- CO PLING DU DEPTH AN	ICT- (ST	RD AT	PA	C¢HI D SK) SO	D SO GEN; (P OIS- C OLVED SA	ER- NE ENT (N TUR- A	ARD- NE ESS NON MG/L BON AS (M	RD- SSy CAR- ATE IG/L CO3)
21 1 21 1 21 1	1235 1237 1239 1241 1243 1245	1.00 10.0 20.0 30.0 40.0 49.0	202 202 202 202 202 207 220	7.8 7.6 7.4 7.3 6.7	24.0 23.0 23.0 23.0 19.5 18.0		7.4 6.9 6.5 5.7 .3	87 80 75 66 3 2	67 77	8 10
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUMy DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE; DIS- SOLVED (MG/L AS F)	
MAY 21 21 21 21 21 21	23		13	.7	2.3	59 67	7.0	21	.10 	
DATE	SILICAN DIS- SOLVED (MG/L AS SIO2)	CONSTI-	N1TRO- GEN; NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN;AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GENY TOTAL (MG/L AS N)	PHOS- PHORUS; TOTAL (MG/L AS P)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUMy DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	
MAY 21 21 21 21 21 21	1.7	 	.020 .020 .060 .020	.80 .89 .67	.82 .91 .73	.030 .020 .020 .030	1 4	200	<1 <1	
DATE	CHRO- MIUMW DIS- SOLVED (UG/L AS CR)	(UG/L	IRON; DIS- SOLVED (UG/L AS FE)	LEADy DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUMy DIS- SOLVED (UG/L AS SE)	SILVERy DIS- SOLVED (UG/L AS AG)	ZINC P DIS- SOLVED (UG/L AS ZN)	
MAY 21 21 21 21 21 21	10		<10 10 10 30	17 <10	3 0 10 2100	.0	0	0 0	6	
				30213209	5333/01 SI	TE A		OXY	rgen ,	
	DATE	TIME DE	CI M- CO LING DU LPTH AN	ICT (ST	PH CAND- TEME RD ATU TS) (DEC	PER- (SE URE DI	CCHI D	GEN, (F GEN, (F DIS- C DIVED SA	DIS- DLVED PER- CENT ATUR- CION)	
2 2 2 2	AY 21 21 21 21	1337 1 1339 2 1341 3 1343 4	1.00 0.0 0.0 0.0 0.0 0.0	202 202 202 202 202 209 220	7.8 7.6 7.4 6.7	24.0 23.5 23.0 23.0 9.5 7.5	2.04	7.1 1.4 7.0 6.3 .3	91 87 81 73 3	

-124-

TABLE 24.--Chemical-quality survey of Lake Conroe, May 21, 1981--continued $302245095365301 \ \ \text{SITE B}_{\textbf{C}}$

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
21 21 21 21	1144 1146 1148 1150	1.00 10.0 20.0 29.0	186 186 186 186	8.0 7.9 7.9 6.9	24.0 24.0 24.0 23.5	2.20	7.7 7.5 7.1 5.8	91 88 84 68
			3023	2309 53 412	01 SITE C	c		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 21 21 21 21 21	1430 1432 1434 1436 1438 1440	1.00 10.0 20.0 30.0 40.0 48.0	202 202 202 202 210 216	7.9 7.8 7.7 7.6 6.8 6.8	24.0 23.5 23.0 23.0 20.0 19.5	1.92	7.5 7.4 7.0 6.6 .3	89 87 81 76 3 4
			3023	200953340	01 SITE C	1		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER-ATURE	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, EIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 21 21 21 21 21	1400 1402 1404 1406 1408 1410	1.00 10.0 20.0 30.0 40.0 46.0	202 202 202 202 209 209	7.8 7.7 7.6 7.4 6.8 6.7	23.5 23.0 23.0 23.0 20.5 20.0	2.12	7.5 7.3 7.0 6.5 1.5	88 84 81 75 17 8
			3024	480953741	01 SITE D	с		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAY 21 21	1510 1512 1514	1.00 10.0 24.0	192 192 198	8.1 8.1 7.2	24.5 24.5 23.5	1.93	7.4 7.3 5.0	88 87 58

TABLE 24.--Chemical-quality survey of Lake Conroe, May 21, 1981--continued $302607095360901 \ \ SITE \ E_C$

DATE	TI	ME	SAM PLI DEP (FE	NG TH	SPE CIF CON DUC ANC (UMH	IC T- E	PH (STA AR UNIT	ND- D	TEMP ATU (DEG	RE	PA	CHI K)	OXYGE DIS SOLV (MG/	N, - ED	SOL (PE	S- VED R- NT UR-	HAR NES (MG AS CAC	S /L
MAY 21 21 21 21 21	15 15 15	36	1 10 20 30 39	.0		202 202 202 210 212		8.0 8.0 7.7 6.9 6.8	2 2 2	4.5 4.0 3.5 2.5	1	.70	7 6	.7 .6 .9 .2		91 90 81 60 7		64 69
DATE	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALC DIS SOL' (MG AS	- VED /L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	- ED /L	SOD A SOR TIO RAT	D- P- ON	SI DI	S- VED /L	ALKA LINIT FIEL (MG/ AS CACO	Y D L	SULF DIS SOL (MG AS S	- VED /L	CHL RID DIS SOL (MG AS	E, VED /L
MAY 21 21 21 21		7 7	22			.2	13			•7 •7		.4		57 63		7.0	23	
Đ.	ATE	DI: SOI (MC A	LVED G/L	SOL	OF TI-	G NO 2 TO (M	TRO- EN, +NO3 TAL G/L N)	GEN MON ORGA TO (MX	TRO- ,AM- IA + ANIC TAL G/L N)	GI TO: (M	TRO- EN, TAL G/L N)	PHORE TO TA	US, AL /L	IRO DI SOL (UG AS	S- VED /L	NES DI SOL (UG	S- VED	
2 2 2	Y 1 1 1		1.9		110		.010		.72 .77 .83		.73 .79 .84	. (020 020 030		<10 10 20		8 40 340	
							3027	1409	53722	01 s	ITE F	'c						
D.	ATE	T	I ME	SAM PLI DEP (FE	NG	CO DU AN	FIC N- CT-		AND- RD	ATI	PER- URE G C)	TRA PA EN (SEC DIS	R- CY CHI K)	OXYG DI SOL (MG	S- VED	SOI (PE CE SAI	S- VED	
2	Y 1 1	1	610 612 614	10	.00		195 195 195		8.4 8.1 7.0	:	24.5 24.0 23.0	2	.05		8.2 7.5 2.8		98 88 32	

TABLE 24.--Chemical-quality survey of Lake Conroe, May 21, 1981--continued $303129095360501 \ \mbox{SITE} \ \mbox{G}_{\mbox{\scriptsize C}}$

DATE	TII	ME	SAMPLII DEP' (FE	NG TH	SPE CIF CON DUC ANC (UMH	I C - T- E	PH (STA AR UNIT	ND- D	TEMP ATU (DEG	RE	PA	K)	OXYGE DIS SOLV (MG)	S- /ED	OXYG DI SOL (PE CE SAT ATI	S- VED R- NT UR-	HARI NES (MG, AS CAC	S /L
MAY 21 21 21	164 164 164 165	47 49	1 10 20 31	.0		240 253 290 295		7.9 6.9 6.7 6.8	2	5.5 3.5 2.5 2.5	1	.01		7.4 3.1 .4 .4		90 36 5 5		77 100
DATE	HARI NESS NONCA BONAT (MG)	S, AR- CE /L	CALC DIS- SOL' (MG AS	VED /L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	SOD A SOR TI RAT	D- P- ON	SI DI		ALKA LINIT FIEI (MG/ AS CACO	LD LY	SULF DIS SOL (MG AS S	- VED /L	CHLC RIDI DIS- SOLY (MG	E, - VED /L
MAY 21 21 21		10 12	27 36			·4 -7	16 19			.8		.5		67 89		0 4.8	28 33	
D	ATE	DI SO (M A	LVED G/L	SUM CONS TUES DE SOS	IDS, OF STI- NTS, IS- LVED G/L)	G NO2 TO (M	TRO- EN, +NO3 TAL G/L N)	GEN MON ORG TO (M	TRO- ,AM- IA + ANIC TAL G/L N)	GI TO' (MX	TRO- EN, TAL G/L N)	PHO TO (M	OS- RUS, TAL G/L P)	SO: (UC	ON, IS- LVED G/L FE)	NE: D: SO: (UC	NG A- SE, IS- LVED G/L MN)	
2 2	Y 1 1		5.7		130		.020		1.0		1.0		.080 .120 		20 100 1100		6 180 790	

TABLE 25.--Chemical-quality survey of Lake Conroe, August 20, 1981

UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

302127095335501 SITE A_C

DATE	TIME D	SAM- CO PLING DU DEPTH AN	JCT- (ST	RD AT	P E IPER- (SE CURE DI	CCHI I	GEN, (F OIS- C OLVED SA	PER- N CENT (ATUR-	IARD- MIESS NO MG/L BO AS (HARD- NESS; ONCAR- ONATE (MG/L CACO3)
AUG 20 20 20 20 20	1105 1107 1109 1111 1113 1115	1.00 10.0 20.0 30.0 40.0 50.0	183 183 183 204 215 224	8.0 7.8 7.7 6.7 6.8 6.9	30.5 30.0 30.0 26.0 22.5 21.5		5.6 5.4 5.2 .0 .0	74 71 68 0 0	59 75	
DATE	CALCIUM DIS- SOLVED (M ⁻ /L AS CA)	DIS- SOLVED (MG/L	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM; DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	(MG/L)
AUG 20 20 20 20 20	·	2.2	12	.7	2.5	52 82	1.0	24 17	.10	
DATE	SILICAy DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN; NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN;AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GENY TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	DIS- SOLVED (UG/L)
AUG 20 20 20 20 20	·	=======================================	.120 <.100 <.100 <.100	.84 .78 .82	.96 	.040 .040 .040 .040	1	70 150		• • •
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	(UG/L	IRON; DIS- SOLVED (UG/L AS FE)	LEAD; DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUMy DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVER (UG/L AS AG)	DIS- SOLVEI (UG/L	
AUG 20 20 20 20 20	 	=======================================	<10 -10 1400 1500	<10 <10	23 30 1600 3200	.0	0 0	 (·	• • •

Table 25.--Chemical-quality survey of Lake Conroe, August 20, 1981--continued

302132095333701 SITE Ac

DATE	TIME	SAM- PLI NG DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 20 20 20 20 20 20	1146 1148 1150 1152 1154 1156 1158 1200	1.00 10.0 20.0 30.0 40.0 50.0 60.0 66.0	185 185 185 202 217 233 275 282	7.9 7.8 7.7 6.7 6.8 6.8 7.0	30.5 30.5 30.5 26.5 22.5 20.5 19.0	1.35	5.7 5.4 5.4 .0 .0 .0	75 71 71 0 0 0 0
			3022	450953653	01 SITE B	С		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 20 20 20	1039 1041 1043 1045	1.00 10.0 20.0 27.0	185 185 185 185	7.9 7.7 7.4 6.8	30.5 30.5 30.0 29.5	1.95	4.9 4.5 3.8 1.1	65 59 50 14
			3023	230953412	01 SITE C	С		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 20 20 20 20 20	1250 1252 1254 1256 1258 1300	1.00 10.0 20.0 30.0 40.0 56.0	182 182 182 203 215 233	7.8 7.7 7.3 6.8 6.8	30.5 30.5 30.0 25.0 23.0 22.0	1.80	5.8 5.7 4.8 .0 .0	77 75 63 0 0
			3023	200953340	01 SITE C	1		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 20 20 20 20 20	1230 1232 1234 1236 1238 1240	1.00 10.0 20.0 30.0 40.0 48.0	182 182 182 203 215 233	7.8 7.7 7.3 6.8 6.8	30.5 30.0 30.0 25.0 23.0 22.0	1.87	5.8 5.7 4.8 .0	77 75 63 0 0

Table 25.--Chemical-quality survey of Lake Conroe, August 20, 1981--continued

			•	•	•			<u> </u>	, , ,	
				3024	480953741	01 S	ITE D	:		
DAT	°E	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	AT	PER- URE C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 20. 20. 20. 20.	•••	1334 1336 1338 1340	1.00 10.0 20.0 26.0	183 183 183 185	8.2 8.0 7.4 6.8	;	31.0 30.5 30.5 29.5	1.68	6.0 5.5 4.2 .7	80 73 56 9
				3026	070953609	01 S	ITE E _C	:		
DAT	`E	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	ATI	PER- JRE G C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
AUG 20. 20. 20. 20.	• •	1354 1356 1358 1400	1.00 10.0 20.0 34.0	184 184 184 224	7.5 7.7 7.2 6.7		30.5 30.0 30.0 25.0	1.29	5.3 5.5 4.3	70 73 57 0
	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAL BONATI (MG/I CACO)	CALCI R- DIS- E SOLV L (MG/	DI ZED SOL L (MG	UM, SODI S- DIS VED SOLV /L (MG	ED /L	SODI AD SORE TIC RATI	O- SII O- DI ON SOL	UM, LINI S- FIE VED (MG /L AS	TY SULFATE LD DIS- /L SOLVED (MG/L
AUG 20 20 20	59 74	· .	4 20 0 26		.2 12				.5	55 <1.0 85 4.0
DAT	R D S	CHLO-SIDE, OIS-SOLVED MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN MON ORG TO (MI	IA +	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
AUG 20. 20. 20.	••	22 35	3.6	89 140	<.100 <.100 <.100		•77 •79 1•7	.050 .030 .300	<10 60 2800	5 60 2200
				3027	140953722	01 S	ITE F	:		
DAT	'E	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	AT	PER- URE G C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)

8.1 7.4 6.6 31.0 30.0 29.0

179 179 179

AUG 20... 20...

1421 1423 1425 1.00 10.0 23.0

Table 25.--Chemical-quality survey of Lake Conroe, August 20, 1981--continued $303129095360501 \ {\rm SITE} \ {\rm G}_{\rm C}$

DATE		TIME	I	SAM PLI: DEP (FE	NG TH	SPE CIF CON DUC ANC (UMH	IC - T- E	PH (STA AR UNIT	ND- D	TEMP ATU (DEG	RE	PA	CY CHI K)	OXYG DI SOL (MG	S- VED	SOI (PI CI SA:	S- VED	HARD NESS (MG/ AS CACO	L
AUG 20 20 20		1504 1506 1508 1510	3	1 10 20 32	.0		184 184 184 185		7.7 6.9 6.3 6.3	3	1.5 0.5 0.0 9.5	1	.01		6.8 4.0 .0		91 53 0 0		59 61
DATE	N B	HARD- NESS, ONCAR ONATE (MG/I CACO3	\ - -	CALC DIS SOL (MG AS	- VED /L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	- ED /L	SOD A SOR TI RAT	D- P- ON	SI DI		ALK LINI FIE (MG AS CAC	TY LD /L		S- LVED I/L	CHLO RIDE DIS- SOLV (MG/ AS C	ED L
AUG 20 20 20		-	3	20 21			.1	12			.7 -7		.7		56 66		1.0	21 16	
I	DAT		DIS SOI	LVED G/L S	SOL	OF TI-	G NO 2 TO (M	TRO- EN, +NO3 TAL G/L N)	GEN MON ORG TO (M	TRO-, AM- IA + ANIC TAL G/L N)	GI TO (MX	TRO- EN, TAL G/L N)	PHO TO (M	OS- RUS, TAL G/L P)	D SO (U	ON, IS- LVED G/L FE)	NE D SO: (UC	NG A- SE, IS- LVED G/L MN)	
2	JG 20. 20. 20.	• •	1	6.7		99 110		.110		1.0 .95 		1.1		.050 .060 		<10 30 1700		4 20 650	

TABLE 26.--Chemical-quality survey of Lake Conroey March 3y 1982

UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

302127095335501 SITE A_C

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN; DIS- SOLVED (MG/L)	OXYGEN; DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
MAR 03 03 03 03	0920 0922 0924 0926 0928 0930	1.00 10.0 20.0 30.0 40.0 53.0	182 182 182 182 182 182	7.8 7.7 7.5 7.5 7.4 7.4	12.5 12.0 11.5 11.5 11.0	1.19	10.7 10.4 10.4 10.5 10.5	101 97 96 97 96 96	67 70
DATE	HARD- NESSY NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM; DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE; DIS- SOLVED (MG/L AS CL)
MAR 03 03 03 03	7 9	23	2.3	12	.7 .8	2.5	60 61	<5.0 <5.0	23
DATE	FLUO- RIDEW DIS- SOLVED (MG/L	SILICAY DIS- SOLVED (MG/L AS	SOLIDSY SUM OF CONSTI- TUENTSY DIS- SOLVED	NITRO- GEN; NO2+NO3 TOTAL (MG/L	NITRO- GENWAM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, TOTAL (MG/L	PHOS- PHORUS; TOTAL (MG/L	IRON; DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L
	AS F)	S102)	(MG/L)	AS N)	AS N)	AS N)	AS P)	AS FE)	AS MN)

302132095333701 SITE A1

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DE¢ C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGENW DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 03 03	0946 0948 0950	1.00 10.0 20.0	182 182 182 182	7.8 7.7 7.5 7.4	12.5 12.5 12.0 11.5	1.18	10.6 10.5 10.3 10.3	100 99 96 95
03 03 03	0952 0954 0956	30.0 40.0 55.0	182 182 184	7.4 7.4 7.4	11.0		10.5	96 97

TABLE 26.--Chemical-quality survey of Lake Conroe, March 3, 1982--continued $302245095365301 \ \mbox{SITE B}_{\mbox{\scriptsize C}}$

DATE MAR	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
03 03 03	0900 0902 0904 0906	1.00 10.0 20.0 29.0	184 184 184 187	7.9 7.8 7.4 7.4	12.5 12.5 11.5 11.5	1.50	10.9 10.6 10.2 9.9	103 100 94 91
			3023	230953412	01 SITE C	С		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 03 03 03 03	1016 1018 1020 1022 1024 1026	1.00 10.0 20.0 30.0 40.0 50.0	182 182 182 182 182 182	7.8 7.8 7.7 7.7 7.3 7.4	12.5 12.0 12.0 12.0 11.0	1.17	10.9 10.9 10.7 10.3 10.3	103 102 100 96 94
			3023	200953340	01 SITE C	1		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 03 03 03 03	1000 1002 1004 1006 1008 1010	1.00 10.0 20.0 30.0 40.0 50.0	182 182 182 182 182 184	7.8 7.8 7.7 7.4 7.3 7.3	12.5 12.5 12.0 11.5 11.0	1.04	10.8 10.7 10.3 9.9 9.8 9.9	102 101 96 91 90
			3024	480953741	01 SITE D	с		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 03 03 03	1040 1042 1044 1046	1.00 10.0 20.0 27.0	186 186 182 182	8.1 7.5 7.3 7.4	13.0 12.0 11.5 11.5	1.78	10.2 9.8 9.9 10.1	98 92 92 93

TABLE 26.--Chemical-quality survey of Lake Conroe, March 3, 1982--continued $302607095360901~{\rm SITE}~{\rm E}_{\rm C}$

DATE MAR	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	AT (DE	PER- URE G C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
03 03 03	1102 1104	1.00 10.0 20.0 35.0	182 182 182 182	7.8 7.7 7.5 7.3		12.5 12.0 12.0 11.5	1.00	10.7 10.5 10.2 10.4	101 98 95 96
NE (M A DATE CA	HAR RD - NES SS NONC G/L BONA S (MG CO3) CAC	SS, CALC SAR- DIS- TE SOL' /L (MG)	IUM SI - DI VED SOL /L (MG		ED		P- DI ON SOL	UM, LINI S- FIE VED (MG /L AS	TY SULFATE LD DIS- /L SOLVED
MAR 03 03 03	67 66	8 23 8 23		.3 13	 			.6	59 <5.0 59 <5.0
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN MON ORG TO (M	TRO- ,AM- IA + ANIC TAL 3/L N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
MAR 03 03	27	•6 	103	<.090		.80	.010	7	<1
03 03	22	1.1	98	<.090		.87	.010	12	7
			3027	140953722	01 S	TE F	=		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	AT	PER- JRE G C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 03 03 03	1120 1122 1124	1.00 10.0 23.0	182 182 182	7.9 7.6 7.1		13.0 12.5 11.5	1.34	10.5 9.9 10.1	100 94 93

TABLE 26.--Chemical-quality survey of Lake Conroe, March 3, 1982--continued $303129095360501 \ \mbox{SITE} \ \mbox{G}_{\mbox{\scriptsize C}}$

DA	.TE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
03 03	•••	1200 1202 1204 1206	1.00 10.0 20.0 31.0	235 285 325 333	7.7 7.9 7.4 7.3	14.0 13.5 13.0 12.5	.82	10.3 10.2 9.8 10.0	101 99 94 95
DATE	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCA BONAT (MG/ CACO	S, CALC AR- DIS TE SOL 'L (MG	- DI VED SOL /L (MG	UM, SODII S- DIS VED SOLV /L (MG	UM, A - SOR ED TIO /L RAT	P- DI ON SOL	UM, LINI S- FIE VED (MG /L AS	TY SULFATE LD DIS- /L SOLVED (MG/L
MAR 03 03 03	80 100		14 28 28 35		.4 18			•7 •9	66 <5.0 73 5.0
DA	F D S	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE, DIS- SOLVED (UG/L AS MN)
03 03	•••	34 58	.6 4.0	124 180	<.090 <.090	.84 .76	.020	17 26	<1 16

TABLE 27.--Chemical-quality survey of Lake Conroey June 3y 1982

UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; (-less than)

302127095335501 SITE Ac

DATE		TIME	SAM PLI DEP (FE	NG DUC	TIC N- PI CT- (ST. CE A	AND- RD	TEMP ATU (DEG	ER- (RE	TRAN PAF ENC SECC DISF	R- CY OXYG CHI DI K) SOL	D SO SEN: (P S- C VED SA	GEN; IS- LVED ER- ENT TUR- ION)	HARD- NESS (MG/L AS CACO3)
JUN 03 03 03 03 03	•	0840 0842 0844 0846 0848 0850	1 10 20 30 40 53	.0 .0 .0	183 183 186 191 191 244	7.6 /.2 6.7 6.7 6.8 7.3	2 2 2 2	6.5 6.0 4.0 1.0 0.0 7.0	1.	.22	6.0 4.9 1.1 .3 .5	75 61 13 3 6	61 85
DATE	N NO BO (ARD- ESSy NCAR- NATE MG/L ACO3)	SOL (MG	IUM SI - DI VED SOI /L (MO	IS- DI: LVED SOL' G/L (M		SOD A SOR TI RAT	D- P- ON IO	POTA SIU DIS SOLV (MG, AS I	JMy LINI S- FIE JED (MC L AS	TY SUL LLD DI G/L SO G (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUN 03 03 03 03 03	•	4 3			2.1 1:			.8		. 6 . 9	57 82	6.0	19 19
	DATE	R S (LUO- IDE; DIS- OLVED MG/L S F)	SILICAY DIS- SOLVED (MG/L AS SIO2)	SOLIDSY SUM OF CONSTI- TUENTSY DIS- SOLVED (MG/L)	NIT GE NO2+ TOT (MG AS	Ny NO3 AL /L	NITR GENVA MONIA ORGAN TOTA (MG/ AS N	M- + IC L L	PHOS- PHORUS; TOTAL (MG/L AS P)	IRONy DIS- SOLVED (UG/L AS FE)	NES DI SOL (UG	S- LVED
	JUN 03 03 03 03 03	•	.20	2.2	100 129	<. <.	100		60 60 70	<.010 <.010 <.010 <.010	100 100 1300	6	4 30 40 5400
					302	132095	3337	01 SIT	E A _l				
	DATE		TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STA AR UNIT	ND- D	TEMPE ATUR (DEG	E	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	SOL (PE CE SAT	S- LVED
	JUN 03 03 03 03 03	• • •	0910 0913 0916 0919 0922 0925	1.00 10.0 20.0 30.0 40.0 56.0	185 185 187 191 191 229		7.6 7.1 6.7 6.9 7.3	27 26 24 21 20 17	.0	1.22	6.2 4.6 1.0 .3 .3		79 57 12 3 3
302245095365301 SITE B _C													
	DATE		TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STA AR UNIT	ND - .D	TEMPE ATUR (DEG	E	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	SOL (PE CE SAT	IS- LVED
	JUN 03 03 03	•	0819 0821 0823 0825	1.00 10.0 20.0 2/.0	174 166 190 190		8.4 8.4 6.5 6.5	27 24	.5	1.36	7.9 6.9 .0		101 87 0

-136-

TABLE 27.--Chemical-quality survey of Lake Conroe, June 3, 1982--continued $302323095341201~{\rm SITE}~{\rm C}_{\rm C}$

DATE	TIME	SAM- PLI NG DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)				
JUN 03 03 03 03	0955 0957 0959 1001 1003 1005	1.00 10.0 20.0 30.0 40.0 49.0	185 185 185 190 200 208	8.1 7.6 7.0 6.7 6.9 7.1	27.5 26.5 26.0 21.5 20.0 19.5	1.13	7.1 6.2 4.5 .2 .0	91 78 56 2 0 2				
302320095334001 SITE C ₁												
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)				
JUN 03 03 03 03 03	0941 0943 0945 0947 0949 0951	1.00 10.0 20.0 30.0 40.0 49.0	185 185 185 190 200 204	8.0 7.6 6.9 6.7 6.9 7.0	27.5 26.5 25.5 21.5 20.0 19.5	1.22	6.5 5.5 2.8 .2 .0	83 69 35 2 0 3				
302448095374101 SITE D _C												
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)				
JUN 03 03	1026 1028 1030	1.00 15.0 24.0	173 186 198	8.6 7.2 6.6	28.5 26.5 25.0	1.47 	7.1 4.1 .0	92 51 0				
			3026	070953609	01 SITE E	е						
DATE	TI ME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)				
JUN 03 03 03	1044 1046 1048 1050	1.00 10.0 20.0 35.0	186 185 185 194	8.2 8.0 7.5 6.9	28.0 27.5 27.0 22.0	•92 	6.9 6.3 4.7	89 81 60 1				

302607095360901 SITE E_c--continued

DATE	HAF NES (MG AS	RD- SS N I/L B	HARD- NESS, IONCAR- BONATE (MG/L CACO3)	CALCI DIS- SOLV (MG/ AS C	UM S D ED SO L (M	GNE- IUM, IS- LVED G/L MG)	SODI DIS SOLV (MG AS	ED /L	SODI AD SORP TIO RATIO	- ! - ! N S0	OTAS- SIUM, DIS- DLVED MG/L S K)	ALKA LINIT FIEI (MG/ AS CACO	ry s LD /L	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN 03 03 03	•	63 66	7 6	22 23		2.0	12			.7 .7	2.7		56 61	6.0 5.0
	DATE	CHLO RIDE DIS- SOLV (MG/ AS C	SO (M) L A	ICA, S- LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	G NO2 TO (M	TRO- EN, +NO3 TAL G/L N)	NITE GEN, A MONIA ORGAN TOTA (MG/ AS N	M- IC L L	PHOS- PHORUS TOTAL (MG/L AS P)	, D SO: (Ud	ON, IS- LVED G/L FE)	MANG NESE DIS SOLV (UG / AS N	E, S- /ED /L
`	JUN 03 03 03	18 18		2.3	99 100	<	.100	1.	90	<.010 -040 .030	-)	6 30 93	7	3 30 700
				302714095372201					ITE FC					
	DATE	TIM	E DE	ING PTH	SPE- CIFIC CON- DUCT- ANCE (UMHOS)		AND- RD	TEMPE ATUR (DEG	E	TRANS- PAR- ENCY (SECCHI DISK) (M)	0XY0 L D: S0:	GEN, IS- LVED G/L)	OXYGE DIS SOLV (PER CEN SATU	S- /ED {- /T /R-
	03 03 03	110 110 111	8 1	1.00 0.0 4.0	178 178 172		8.7 8.3 6.4	28	.0	1.33	-	7.5 5.4 .1		98 70 1
	303129095360501 SITE G _C													
	DATE	TIM	E DE	M- I NG PTH EET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)		AND - RD	TEMPE ATUR (DEG	ŀΕ	TRANS- PAR- ENCY (SECCH: DISK) (M)	OXYO L D SO:	GEN, IS- LVED G/L)	OXYG I DIS SOLV (PER CEN SATU ATIO	S- /ED ?- /T /R-
	JUN 03 03 03	114 114 114 114	4 1 6 2	1.00 0.0 0.0 3.0	167 158 160 163		8.2 6.4 6.1 6.2	27 25	.5 .0 .0	•4! 	-	5.7 1.2 .0		75 15 0 0
DATE	NES (MG AS	HARD - NES NESS NONC (MG/L BO NA AS (MG CACO3) CAC		CALCI DIS- SOLV (MG/ AS C	UM S D ED SO L (M	GNE- IUM, IS- LVED G/L MG)	UM, SODI S- DIS VED SOLV /L (MG		SODIO AD- SORP- TIO RATIO	- ! - I N S(OTAS- SIUM, DIS- DLVED MG/L S K)	ALKA LINIT FIEI (MG/ AS CACO	ry s LD 'L	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN 03 03 03	•	55 52	7 0	19 18		1.9	11	 .4		.7	2.8		48 54	6.0 5.0
	DATE	CHLO RIDE DIS- SOLV (MG/ AS C	, DI SO ED (MX L A	ICA, S- LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	G NO 2 TO (M	TRO- EN, +NO3 TAL G/L N)	NITE GEN, A MONIA ORGAN TOTA (MG/ AS N	M- IIC I L L L	PHOS- PHORUS, TOTAL (MG/L AS P)	. D: SO: (U)	ON, IS- LVED G/L FE)	MANG NESE DIS SOLV (UG / AS N	E. S- VED 'L
	JUN 03 03 03	16 12		3.6	89 95	<	.100 .100 .100	1.	90 1 30	.050 .110 .770) -	26 180 1900	3	15 350 340

TABLE 28.--Chemical-quality survey of Lake Conroey September 2, 1982

(UMHOS-micromhos per centimeter at 25° Celsius; DEG C-degrees celsius; M-meters; MG/L-milligrams per liter; UG/L-micrograms per liter; --parameter not determined; <-less than)

302127095335501 SITE A_c

DATE	TII	ME	SAM PLI DEP (FE	NG TH	SPE CIF CON DUC ANC	IC T- E	PH (STA AR UNIT	ND- .D	TEMF ATU (DEG	JRE	PA	K)	SOI	GEN; IS- LVED G/L)	SOL (PE CE SAT	S- VED	HARI NESS (MG, AS CACO	S /L
SEP 02 02 02 02 02	084 085 085 085	50 52 54 56	1 10 20 30 40 54	.0 .0 .0	:	190 190 190 210 210 318		7.1 7.0 6.8 6.6 6.6 6.5	2 2 2 2 2	19.0 19.0 19.0 15.0 10.5 8.5	1	.36		4.2 3.5 2.3 .0 .0		55 46 30 0 0		64
DATE	HARI NESS NONCA BONAT (MGA CACO	Sy AR- CE /L	CALC DIS SOL (MG AS	- VED /L	MAGI SII SOL (MG AS	UM; S- VED /L	SODI DIS SOLV (MG AS	ED /L	SOR	ON	SI		AS	TY ELD G/L	SULF DIS SOI (MG AS S	VED /L	CHLC RIDI DIS- SOLV (MG, AS (Ey - VED /L
SEP 02 02 02 02 02		7 0	22			.1	13			.7		.1		57 140		6.0 7.0	21	
Γ	DATE	RI D SO (M	UO- DEW IS- LVED G/L F)	SILI DIS SOL (MG AS SIO	VED /L	SUM CONS TUES D SOS	IDSy OF STI- NTSy IS- LVED G/L)	GI NO2- TO' (MC	TRO- EN; +NO3 TAL G/L N)	GEN MON I	IA + ANIC FAL G/L	PHO TO (M	OS- RUSy TAL G/L P)	D SO (U	ONy IS- LVED G/L FE)	NES DI SOL (UG	S- VED	
0 0 0 0	EP 02 02 02 02		.10	1	2.4		100	<	.100	1	1.1		.040 .040 .040		6 40 970 8300		13 30 200 	
							3021	3209	53337	01 S	ITE A	1						
Ε	DATE	Т	IME	SAM PLI DEP (FE	NG TH	DU AN	FIC N- CT-		AND- RD	ATU	PER- JRE G C)	P E (SE DI	ANS- AR- NCY CCHI SK) M)	D SO	GEN; IS- LVED G/L)	SOL (PE CE SAT	S- VED	
0 0 0	EP 02 02 02 02	0 0 0 0	924 926 928 930 932 934	10	.0		190 200 200 219 219 300		7.1 6.9 6.8 6.6 6.7 6.7	4	29.5 29.0 28.5 26.0 20.5		1.35		4.1 3.2 1.6 .0		54 42 21 0 0	

TABLE 28.--Chemical-quality survey of Lake Conroe, September 2, 1982--continued $302245095365301 \ \ SITE \ \ B_C$

DATE SEP 02 02 02	TI ME 0828 0830 0832 0834	SAM- PLING DEPTH (FEET) 1.00 10.0 20.0 27.0	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS) 7.4 7.1 6.5 6.4	TEMPER- ATURE (DEG C) 29.5 29.5 29.0 28.0	DISK) (M)	OXYGEN, DIS- SOLVED (MG/L) 5.0 4.3 .1	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) 66 57 1 0		
			3023	230953412	01 SITE	Сс				
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)		
SEP 02 02 02 02 02	1020 1022 1024 1026 1028 1030	1.00 10.0 20.0 30.0 40.0 55.0	190 190 190 221 221 234	7.7 7.3 7.2 6.7 6.8	30.0 29.5 29.5 25.5 21.5 20.5	 	6.6 5.1 4.3 .0 .0	88 67 57 0 0		
302320095334001 SITE C ₁										
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)		
SEP 02 02 02 02 02 02	1000 1002 1004 1006 1008	1.00 10.0 20.0 30.0 40.0 50.0	190 190 190 220 220 239	7.7 7.3 6.8 6.7 6.7	30 · 0 29 · 5 29 · 0 26 · 0 21 · 5 20 · 5	 	5.8 4.9 2.8 .0 .0	77 64 37 0 0		
			3024	480953741	01 SITE	D _C				
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	DISK)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)		
SEP 02 02 02	1047 1049 1051 1053	1.00 10.0 20.0 24.0	189 189 189 213	7.8 7.2 7.0 6.5	30.5 30.0 30.0 29.5		6.1 4.8 4.6	82 64 61 0		

TABLE 28.--Chemical-quality survey of Lake Conroe, September 2, 1982--continued $302607095360901 \ \mbox{SITE E}_{\mbox{\scriptsize C}}$

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP 02 02 02	1104 1106 1108 1110	1.00 10.0 20.0 34.0	188 188 188 249	7.8 7.7 7.3 6.8	31.0 30.5 30.0 23.5	1.22	6.5 6.4 5.8	88 86 77 0
NE (M) A		SS, CALC	IUM SI - DI VED SOL /L (MG		UM, A - SOR ED TI /L RAT	P- DI ON SOL	UM, LINI S- FIE VED (MG /L AS	TY SULFATE LD DIS- /L SOLVED (MG/L
SEP 02 02 02	64 83	8 22 0 29		.3 13			.9	57 6.0 97 10
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANG A- NESE. DIS- SOLVED (UG/L AS MN)
SEP 02 02 02	20 22	2.5 7.6	100 150	<.100 <.100 <.100	1.1	.040 .050 .330	4 20 5400	5 40 3800
			3027	140953722	01 SITE F	С		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
SEP 02 02 02	1126 1128 1130	1.00 10.0 22.0	190 190 198	7.9 7.9 6.4	31.5 31.0 28.5	1.27	6.3 6.3	86 85 0

TABLE 28.--Chemical-quality survey of Lake Conroe, September 2, 1982--continued $303129095360501~{\rm SITE}~G_C$

DAT	°E	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	ΑT	PER- URE G C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYG DI SOL (PE CE: SAT	S- VED R- NT UR-
SEP 02. 02. 02. 02.	•••	1154 1156 1158 1200	1.00 10.0 20.0 33.0	191 191 191 196	7.7 6.7 6.4 6.4		31.5 30.5 30.0 30.0	.87	6.6 4.0 .0		90 54 0 0
	HARD- NESS (MG/L AS CACO3	NO NO BO NA (MG	SS, CALC CAR- DIS TE SOL	IUM SI - DI VED SOI /L (MG		ED	SOD A SOR TI RAT	D- SI P- DI ON SOL	UM, LINI S- FIE VED (MG /L AS	TY LD /L	SULFATE DIS- SOLVED (MG/L AS SO4)
SEP 02 02 02	-	54 53	8 22 4 22		2.2 14 2.0 14				.5	56 59	6.0 7.0
DAT	'E	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN MON ORG TO (M	TRO- AM- IA + ANIC TAL 3/L N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANONES: DI SOL' (UG AS	E. S- VED /L
SEP 02. 02. 02. 02.	• •	21	3.8 5.9	110 110	<.100 <.100 <.100		1.3	.070 .050 	10 820		10 310

TABLE 29.--Phytoplankton analyses of Lake Conroe, October 1977 to August 1978

302127095335501 Site AC

DATE TIME	MAR 14.78 0946
TOTAL CELLS/ML	3200
OIVERSITY: DIVISION .CLASS .ORDERFAMILYGFNUS	1.6 1.6 1.9 2.2 2.7
ORGANIS 4	CELLS PER-
CHLOROPHYTA (GREEN ALGAF) •CHLOROPHYCEAE ••CHLOROCOCCALES ••COELASTRACEAE	
COELASTRUMMICRACTINIACEAE	69 2
MICHACTINIUM OOCYSTACEAE	23 1
ANKISTRODESMUSKIRCHNERIELLA	76 2 23 1
••••SELFNASTRUM	130 4 61 2
••••TETRAEDPON •••SCENEDESMACEAE	+ 0
••••CRUCIGENIA ••••SCENEDESMUS	31 1 59 2
••••TETRASTRUM ••TETRASPORALES	92 3
···ELAKATOTHRIX	76 2
ZYGNEMATALES ZYGNEMATACEAE	
····MOUGFOTIA	31 1
CHRYSOPHYTA • BACILLAPIOPHYCEAE	
CENTRALES COSCINODISCACEAE	
····CYCLOTELLA	230 7
MELOSTRA	670# 21
• • PENNALES • • • • FRAGILAHIACEAE	
SYNEDRA NITZSCHIACEAE	* 0
····NITZSCHIA	99 3
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE	
CHROCCOCCALESCHROCCOCCAEAE	
ANACYSTISHORMOGUNALES	1400# 45
ANARAENA	* 0
EUGLENOPHYTA (EUGLENOIDS) •FIGLENOPHYCEAE	
EUGLENALES EUGLENACEAE	
TRACHELOMONAS	* ()
PYRRHOPHYTA (FIRE ALGAE)	
• DINOPHYCEAE • PERIUINIALES	
GLENODINIACEAEGLENODINIUM	31 1

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/24

TABLE 29.--Phytoplankton analyses of Lake Conroe, October 1977 to August 1978--Continued

303129095360501 Site GC

OATE TIME	MAR 14,78 1246
TOTAL CELLS/ML	6100
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS	1.6 1.6 2.0 3.0 3.7
ORGANISM	CELLS PER- /ML CENT
CHLOPOPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALFS ••COELASTRACEAE	
COELASTRUM MICRACTINIACEAE	540 9
GOLENKINIAMICRACTINIUMOOCYSTACEAE	57 1 200 3
ANKISTRODESMUSDICTYOSPHAERIUM	570 9 400 7
KIRCHNEHIELLA OOCYSTIS	200 3 100 2
POLYDRIOPSIS	33 1
SCENEDESMUSTETRASTHUMTETRASPORALES	870 14 540 9
GLOEOCYSTIS	130 2
CHRYSOPHYTA •BACILLARIOPHYCEAE ••CENTRALES ••COSCINODISCACEAE •••CYCLOTELLA	1000# 16
••••STEPHANODISCUS	33 1
PENNALES FRAGILARIACEAE	33 .
SYNEDRA	330 5
GOMPHONEMATACEAE	33 1
NAVICULACEAE	33 1
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROCCOCCALES CHROCCOCCAEAE ANACYSTIS	670 11
EUGLENOPHYTA (EUGLENOIDS)	
• CRYPTOPHYCEAE • • CRYPTOMONIDALES • • • CRYPTOMONODACEAE • • • • • CRYPTOMONAS	100 2
•EUGLENOPHYCEAE ••EUGLENALES	
EUGLENACEAEEUGLENATRACHELOMONAS	33 l 170 3
PYRRHOPHYTA (FIRE ALGAE) DINOPHYCEAE PERIOINIALES PERIOINIACEAE	3
PERIDINIUM	57 1

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
- OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

TABLE 29.--Phytoplankton analyses of Lake Conroe, October 1977 to August 1978--Continued

302127095335501 Site AC

DATE TIME	JUL 1	3•78 006
TOTAL CELLS/ML	1300	00
DIVFRSITY: DIVISION .CLASS .ORDERFAMILYGENUS	(1 2	0.4 0.4 1.4 2.2 2.7
ORGANISM	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES •••OOCYSTACEAE		
••••ANKISTRODESMUS	4300	3
••••TETRAEDRON ••••TREUBARIA	*	0 0
VOLVOCALESCHLAMYDOMONADACEAE		
CHLAMYDOMONAS		0
••ZYGNEMATALES •••ZYGNEMATACEAE		
MOUGEOTIA	1200	1
CHRYSOPHYTA BACILLARIOPHYCEAE PENNALES ACHNANTHACEAE		
ACHNANTHES	*	0
•••NITZSCHIACEAE ••••NITZSCHIA	1600	1
CRYPTOPHYTA (CRYPTOMONADS) •CRYPTOPHYCEAE ••CRYPTOMONIDALES ••CRYPTOMONOOACEAE •••CRYPTOMONAS	•	0
CYANOPHYTA (BLUE-GREEN ALGAE) •CYANOPHYCEAE •CHROCCOCCALES		
CHROCCOCCAEAEANACYSTIS	49000#	37
HORMOGONALESNOSTOCACEAE		
ANABAENA	11000	8
ANABAENOPSISCYLINDROSPERMUM	1800	1 3
•••OSCILLATORIACEAE	3900	3
LYNGBYA	27000#	20
••••OSCILLATORIA •••RIVULARIACEAE	12000	9
RAPHIDIOPSIS	20000	15
PYRRHOPHYTA (FIRE ALGAE) •DINOPHYCEAE ••PERIDINIALES ••PERIDINIACEAE		
PERIDINIUM	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

TABLE 29.--Phytoplankton analyses of Lake Conroe, October 1977 to August 1978--Continued

303129095360501 Site GC

DATE TIME		13•78 331
TOTAL CELLS/ML	180	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.4 0.4 1.3 1.6 2.0
CRGANISM	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) •CHLOROPHYCEAE ••CHLOROCOCCALES ••MICRACTINIACEAE		
MICHACTINIUMOOCYSTACEAE	1000	1
ANKISTRODESMUSDICTYOSPHAERIUMKIRCHNERIELLASELENASTRUMTETRAEDRON	3100 3400 *	2 0 0 0
TREUBARIASCENEDESMACEAE	*	0
SCENEDESMUSVOLVOCALESCHLAMYDOMONADACEAE	•	0
CHLAMYDOMONAS ZYGNEMATALES DESMIDIACEAE	*	0
STAURASTRUM		0
CHRYSOPHYTA BACILLARIOPHYCEAE PENNALES ACHNANTHACEAE CONTRACTOR	•	0
.XANTHOPHYCEAEHETEROCOCCALESCHLOHOTHECIACEAEOPHIOCYTIUM	•	0
	2700 110000#	1 58
HORMOGONALESNOSTOCACEAEANABAENAOSCILLATORIACEAE	5600	3
LYNGBYA	38000#	21
OSCILLATORIA RIVULARIACEAE	17000	9
RAPHIDIOPSIS EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE	3400	2
TRACHELOMONAS		0

NOTE: # - DOMINANT ORGANISM: EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM: MAY NOT HAVE BEEN COUNTED: LESS THAN 1/2%

TABLE 30.--Phytoplankton analyses of Lake Conroe, October 1978 to August 1979

302127095335501 Site AC

DATE TIME	FEB 1	14,79 501	JUN O	15,79 911	AUG 0	17,79 83 3
TOTAL CELLS/ML	7	600	9	200	74	000
DIVERSITY: DIVISION		0.3		0.1		Λ 2
.CLASS		0.3		0.1	'	0.3 0.3
ORDER		0.4		0.1		0.5
FAMILY		0.4		0.1		0.5 1.5
GENUS		0.5	1	0.1		1.6
	CELLS	PER-	CELLS	PER-	CELLS	PER-
ORGANISM	/ML	CENT	/ML	CENT	/ML	CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE						
CHLOROPHICEAE						
COELASTRACEAE						
COELASTRUM		-		-	420	1
HYDRODICTYACEAE						
PEDIASTRUM		-	*	0		-
OOCYSTACEAE	160	•			*	
ANKISTRODESMUS DICTYOSPHAERIUM	160	2		-	420	0 1
KIRCHNERIELLA		-	*	ō	420	-
OOCYSTIS	130	2		-		-
SELENASTRUM		-		-	*	0
TETRAEDRON		-		-	*	0
TREUBARIA		-		-	*	0
SCENEDESMACEAESCENEDESMUS	65	1		_	520	1
TETRASPORALES	05	•		_	320	•
COCCOMYXACEAE						
ELAKATOTHRIX		-	*	0		-
VOLVOCALES						
CHLAMYDOMONADACEAE					*	•
CHLAMYDOMONAS CHLOROGONIUM		-	*	ō		0
VOLVOCACEAE		-	-	·		-
PANDORINA		-		-	840	1
CHRYSOPHYTA						
.BACILLARIOPHYCEAECENTRALES						
COSCINODISCACEAE						
CYCLOTELLA	65	1		-	*	0
MELOSIRA	7000#	93		-	*	0
PENNALES						
FRAGILARIACEAEASTERIONELLA	45	1		_		
NAVICULACEAE	65	•		-		-
NAVICULA	*	0		-		-
NITZSCHIACEAE		•				
NITZSCHIA		-		-	*	0
CRYPTOPHYTA (CRYPTOMONADS)						
.CRYPTOPHYCEAE						
CRYPTOMONADALES						
CRYPTOMONADACEAE						
CRYPTOMONAS		-		-	*	0
CYANOPHYTA (BLUE-GREEN ALGAE)						
.CYANOPHYCEAE						
CHROOCOCCALES						
CHROOCOCCACEAE						
AGMENELLUM		-		-	*	0
ANACYSTIS		-		-	1900	3
HORMOGONALES NOSTOCACEAE						
ANABAENA		-	9100#	99	520	1
OSCILLATORIACEAE						•
OSCILLATORIA		-		-	30000#	41
RIVULARIACEAE						
RAPHIDIOPSIS		-		-	38000#	51
PYRRHOPHYTA (FIRE ALGAE)						
. DINOPHYCEAE						
PERIDINIALES						
GLENODINIACEAE		_			*	
GLENODINIUM		-		-	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

TABLE 30.--Phytoplankton analyses of Lake Conroe, October 1978 to August 1979--Continued

303129095360501 Site GC

DATE TIME		14,79 1756		15,79 156	AUG 1	17,79 131
TOTAL CELLS/ML		2100	15	000	1200	000
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.3 1.3 2.0 2.6 3.2	:	1.6 1.6 2.1 3.0 3.3		0.2 0.2 0.5 1.8 2.1
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCOELASTRACEAE						
COELASTRUMHYDRODICTYACEAE	38	2	590	4		-
PEDIASTRUM MICRACTINIACEAE		-	290	2		-
GOLENKINIA	+-	-	150	1	*	0
OOCYSTACEAE ANKISTRODESMUS	170	8	330	2		_
DICTYOSPHAERIUM KIRCHNERIELLA	1	-	440 180	3 1		-
OOCYSTIS SELENASTRUM	1	-		0	*	0
TETRAEDRON	*	ō	*	0		-
TREUBARIA SCENEDESMACEAE	1-	-	*	0	*	0
SCENEDESMUSVOLVOCALES	75	4	590	4	880	1
CHLAMYDOMONADACEAE CARTERIA					*	0
CHLAMYDOMONAS	Ţ <u>-</u>	-	950	6	*	ŏ
VOLVOCACEAE GONIUM		_	590	4		_
PANDORINA	+-	-	590	4		-
CHRYSOPHYTA .BACILLARIOPHYCEAECENTRALESCSCINODISCACEAECYCLOTELLAMELOSIRAPENNALES	260 790	13 38	620 1100	4 7	* *	0 0
ACHNANTHACEAE		,				
COCCONEIS CYMBELLACEAE	120	6		-		-
CYMBELLA EPITHEMIA	*	0		-		-
FRAGILARIACEAE FRAGILARIA	85	4		_		_
SYNEDRA	28	1		-		-
NAVICULACEAE NAVICULA	94	4		-		-
NITZSCHIACEAE NITZSCHIA	75	4		_		_
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONAE ALESCRYPTOCHRYSIDACEAE						
CHROOMONASCRYPTOMONADACEAE	-	-	*	0		-
CRYPTOMONAS		-	*	0		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEAGMENELLUM	75	4		_	4000	3 2
ANACYSTIS HORMOGONALES NOSTOCACEAE	110	5	440	3	23 0 0	2
ANABAENA ANABAENOPSIS		-	5900#	38	14000	12
OSCILLATORIACEAE		•				_
LYNGBYA OSCILLATORIA	94	4	1800	12	8 80 0 34000#	7 27
RIVULARIACEAE RAPHIDIOPSIS		_		_	58000#	47
•						

TABLE 30.--Phytoplankton analyses of Lake Conroe, October 1978 to August 1979--Continued

303129095360501 Site GC

DATE TIME	FEB 1		15,79 156	AUG 17,79 1131		
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAEEUGLENATRACHELOMONAS	 47	Ž	330	0 2	*	0
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEGYMNODINIALESGYMNODINIACEAEGYMNODINIUM				0		
. PERIDINIALES GLENODINIACEAE GLENODINIUM	••				*	0
PERIDINIACEAE PERIDINIUM		-	110	1		

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
+ - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

TABLE 31.--Phytoplankton analyses of Lake Conroe, October 1979 to August 1980

302127095335501 Site AC

DATE TIME		29,80 136		22,80 001		11,80 027
TOTAL CELLS/ML	2	400	16	000	110	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.3 1.3 1.4 1.8 2.6		1.1 1.1 1.9 2.2 2.8		0.2 0.2 0.8 1.8 2.3
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CŁLLS /ML	PER- CENT
CHLOROPHYTA (GREEN ALGAE) CHLOROPHYCLAECHLOROCOCCALESMICRACTINIACEAEGOLENKINIAMICRACTINIUMOOCYSTACEAEANKISTRODESMUSCHLORELLACHODATELLACHODATELLADICTYOSPHAERIUMKIRCHNERIELLAOOCYSTISTETRAEDRONTREUBARIASCENEDESMACEAECRUCIGENIASCENEDESMACEAECRUCIGENIASCENEDESMUSTETRASPORALESCOCCOMYXACEAEELAKATOTHRIX VOLVOCALESCHLAMY DOMONA DACEAECHLAMY DOMONASVOLVOCACEAEPANDORINA	40 120 90 * 50 90 40 70	2 5 5 4 0 0 - 2 2 4 - 2 3	690 	4 - 0 3 2 2 0 - 0 - 9 1 0 1 - 0 1	 * * * * 650	0 - 0 - 0 - 0 - 0 - 0 - 1 1
ZYGNEMATALES DESMIDIACEAE	į					
CHRYSOPHYTA BACILLARIOPHYCEAE CENTRALES COSCINODISCACEAE CYCLOTELLA PENNALES ACHNANTHACEAE ACHNANTHES FRAGILARIACEAE SYREDRA NITZSCHIACEAE	180 1200#	8 51 -	510 360 *	3 2 0	*	- - 0
NITZSCHIA CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAE .CRYPTOMONADALESCRYPTOCHRYSIDACEAECHROOMONASCRYPTOMONADACEAE	*	-	*	0		-
CRYPTOMONAS CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE		-		-	*	0
AGMENELLUMANACYSTISCOCCOCHLORISHORMOGONALESNOSTOCACEAE	300	13	6900#	43 1	5500 8900 	5 8 -
ANABAENAANABAENOPSISAPHANIZOMENONOSCILLATORIACEAE		-	2800# 1400	9	49000#	45
LYNGBYA OSCILLATORIA SPIRULINA		-	400	2	7700 28000# 1800	7 26 2
RAPHIDIOPSIS		-		-	3400	3
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALLSEUGLENACEAETRACHELOMONAS		-		-	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OK GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

TABLE 31.--Phytoplankton analyses of Lake Conroe, October 1979 to August 1980--Continued

303129095360501 Site GC

DATE TIME	JAN 29,80 1431		MAY 22,80 1356		SEP 11,80 1251		
TOTAL CELLS/ML	8	8800		3000		200000	
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS	1.1 1.1 1.2 1.2		1.3 1.3 1.8 2.2 2.8		0.3 0.3 1.1 1.6 2.3		
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALES .MICRACTINIACEAE .MICRACTINIUM .OOCVSTACEAE .ANKISTRODESMUS .CHODATELLA .DICTYOSPHAERIUM .KIRCHNERIELLA .OOCYSTIS .SELENASTRUM	 280 100 89	- 3 - 1 1	27 110 230 190 140	1 4 - 8 6 5	* * * 1000	- 0 0 0 1 -	
TETRAEDRON WESTELLA		-		-	*	0	
SCENEDESMACEAECRUCICENIASCENEDESMUSTETRASTRUMVOLVOCALES	*	0	55 150 110	2 5 4	2400	1	
CHLAMYDOMONADACEAECHLAMYDOMONASZYGNEMATALES		-	69	2	*	0	
DESMIDIACEAE STAURASTRUM		-		-	*	0	
CHRYSOPHYTA BACILLARIOPHYCEAE .CENTRALESCOSCINODISCACEAECYCLOTELLAMELOSIRASTEPHANODISCUS .PENNALES .ACHNANTHACEAECOCCONEIS .GOMPHONEMATACEAEGOMPHONEMANAVICULACEAENAVICULACEAENAVICULA	360 1900# *	- 0 0	140 41 	5 1	* *	0 - 0	
NITZSCHIACEAE NITZSCHIA	59	1		-	*	0	
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAL .CRYPTOMONADALESCRYPTOMONADACEAECRYPTOMONAS CYANOPHYTA (BLUE-GREEN ALGAL)		-		-	*	0	
.CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEAGMENELLUMANACYSTISHORMOGONALES	 5900#	67	1500#	49	8800 36000#	4 18	
NOSTOCACEAEANABAENAANABAENOPSIS		-	210	7	3000 26000		
OSCILLATORIACEAE LYNGBYA OSCILLATORIA		-		-	97000# 22000		
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESTRACHELOMONAS		-	41	1		-	
PYRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .PERIDINIALESGLENODINIACEAEGLENODINIUM	*	0		_	*	0	

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

TABLE 32.--Phytoplankton analyses of Lake Conroe, October 1980 to August 1981

302127095335501 Site AC

	30212703333301 31 te Ac						
DATE TIME	JAN 15,81 MA 1031			21,81 AUG 2 1236 11		20,81 106	
TOTAL CELLS/ML	2700		g	9200		65000	
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS	1.3 1.3 1.4 1.6			0.6 0.6 1.0 1.1		0.4 0.4 1.9 1.9 2.2	
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .ACHNANTHALESACHNANTHACEAEACHNANTHES					*	0	
COCCONEIS BACILLARIALES		-	*	ō		-	
NITZSCHIACEAENITZSCHIA .EUPODISCALES	*	0	64	1		-	
COSCINODIS CACEAECYCLOTELLAMELOS IRAFRAGILARIALESFRAGILARIACEAE	52 1700#	2 65		-		-	
FRAGILARIA S YNE DRA .NAVICULALES		-	*	ō	*	0	
GOMPHONEMACEAE GOMPHONEMA NAVICULACEAE		-	*	0		-	
NAVICULA		-	*	0		-	
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIA		-	*	0		-	
TETRAEDRONDICTYOS PHAERIACEAE		-	*	0		-	
DICTYOS PHAERIUMMICRACTINIACEAEMICRACTINIUM	52 64	2		0		-	
OOCYSTACEAE ANKISTRODESMUS	26	1	120	1	2900	4	
FRANCEIA SELENASTRUM		<u>:</u>	*	0	*	<u> </u>	
SCENEDESMACEAECRUCIGENIASCENEDESMUS	180	7	10 0 28 0	1 3		-	
. VOLVOCALES	26	1	180	2	*	0	
COSMARIUM EUASTRUM		-	*	0		-	
ZYGNEMATACEAE MOUGEOTIA		-	-+	-	750	1	
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAE							
ANACYSTISNOSTOCALESNOSTOCACEAE	520#	19	390	4	15000#	23	
ANABAENA		-		-	1700	3	
APHANIZOMENONCYLINDROS PERMUMOSCILLATORIALES		-	180	2 -	4500 8400	7 13	
OS CILLATORIA CEAE LYNG BYA		-		-	31 00 0#	47	
OSCILLATORIA EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE		-	770 0#	84		-	
EUGLENALES EUGLENACEAE							
EUGLENA TRACHELOMONAS	*	ō	-	0		0 -	
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEGLENODINIACEAE							
GLENODINIUM		-	†	0		-	

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

TABLE 32.--Phytoplankton analyses of Lake Conroe, October 1980 to August 1981--Continued

303129095360501 Site GC

DATE TIME	JAN 15,81 1317		MAY 21,81 1646		AUG 20,81 1505	
TOTAL CELLS/ML	2700		21000		130000	
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS	0.3 0.3 0.4 0.4 0.6		0.8 0.8 1.6 1.8 2.5		0.5 0.5 1.4 1.5 2.1	
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .BACILLARIALESNITZSCHIACEAE						
NITZS CHIAEUPO DIS CALESCOS CINO DIS CACEAE	*	0	*	0		-
CYCLOTELLAMELOS IRAFRAGILARIALES	64 2500#	93	290 390	1 2	*	0 -
FRAGILARIACEAE S YNEDRA	*	0	*	0		-
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE			*	0		
S CHROE DE RIATETRAE DRONDICTYOS PHAERIACEAE	26	ī	*	0		-
DICTYOS PHAERIUMWES TE LLAOOCYS TACEAE		-	500 	2 -	3500	3
ANKISTRODESMUSKIRCHNERIELLAOOCYSTIS	39 	1 - -	530 180 140	3 1 1	41 00 * 	3 0 -
SCENEDESMACEAECOELASTRUMCRUCIGENIASCENEDESMUS		-	290	1 0	870 1700	1 - 1
CHLAMYDOMONA DACEAE CHLAMYDOMONAS	*	0	430	2		-
ZYGNEMATALESDESMI DIACEAECOS MARIUMS PONDYLOS IUM		-		-	*	0
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONA DALESCRYPTOMONA DACEAECRYPTOMONAS	*	0		-		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE						
AGMENELLUMANACYSTIS .NOSTOCALES	*	ō	4600# 9800#		22000# 66000#	
NOSTOCACEAEANABAENA .OSCILLATORIALESOSCILLATORIACEAE		-	2100	10	5000	4
LYNGBYAOSCILLATORIAPHORMIDIUM		-	610 290	3 1	26000# 	20
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAETRACHELOMONAS		-	180	1		-
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .DINOKONTAEPERIDINIACEAE						
PERIDINIUM		-	110	1		-

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%